INTENDED USE
Etest® in an agar-based gradient test for quantification and identification of yeasts in the genus Candida. A prefabricated concentration gradient of a series of drug dilutions is provided. Minimum Inhibitory Concentration (MIC) or the Minimum Fungistatic Concentration (MFC) of a test organism can be established in Etest clearly differentiates the two methods.

The Etest gradient technology is based on a combination of the diffusion and dilution principles for susceptibility testing. Like diffusion methods, Etest directly quantifies antifungal susceptibility in terms of MIC values. However, in contrast to the diffusion method, Etest can be performed by personnel trained in mycology and antimycotic susceptibility testing. Minimum Inhibitory Concentration (MIC) or the Minimum Fungistatic Concentration (MFC) of a test organism can be determined by Etest.

PRINCIPLES OF USE
Etest is a pre-defined concentration gradient of a specific antifungal agent. Etest is coated with a thin non-porous plastic film onto which a defined concentration gradient of the drug e.g. molecular weight, solubility and diffusion of the drug is applied. The gradients are based on extensive data generated from in vitro testing of hundreds of strains of pathogenic yeasts to five antifungal agents.

The concentration gradient per strip is a format that is compatible with the format used for determination of various resistance mechanisms. Studies have shown, for example, that Etest can efficiently detect heteroresistance and intrastrain resistance to azole in Candida albicans and C. glabrata.

Although there is some concern about the disc diffusion test, the preferred and reliable method of antifungal gradient test in Etest is clearly different from the two methods. Although there is some concern about the disc diffusion test, the preferred and reliable method of antifungal gradient test in Etest is clearly different from the two methods.

The Etest gradient technology is based on a combination of the diffusion and dilution principles for susceptibility testing. Like diffusion methods, Etest directly quantifies antifungal susceptibility in terms of MIC values. However, in contrast to the diffusion method, Etest can be performed by personnel trained in mycology and antimycotic susceptibility testing. Minimum Inhibitory Concentration (MIC) or the Minimum Fungistatic Concentration (MFC) of a test organism can be determined by Etest.

The concentration gradient per strip is a format that is compatible with the format used for determination of various resistance mechanisms. Studies have shown, for example, that Etest can efficiently detect heteroresistance and intrastrain resistance to azole in Candida albicans and C. glabrata.

Although there is some concern about the disc diffusion test, the preferred and reliable method of antifungal gradient test in Etest is clearly different from the two methods. Although there is some concern about the disc diffusion test, the preferred and reliable method of antifungal gradient test in Etest is clearly different from the two methods.
ETEST ANTIFUNGAL READING GUIDE

AZOLES
When trailing endpoints occur, read the MIC at the first point of significant inhibition of growth i.e. the so-called 99% inhibition as judged by the naked eye. When trailing is strong, especially with species such as C. glabrata with reduced antifungal susceptibility, and for azoles at higher MIC values, read the plate against a strong light source to facilitate visual detection of the endpoint at 10% inhibition.

AMPHOTERICIN B
Read endpoints at complete inhibition of growth i.e. 100% inhibition including all microcolonies, haze and isolated colonies.

FLUCYTOSINE
When trailing endpoints occur, read the MIC at approximately 99% inhibition as judged by the naked eye. Ignore faint haze and minute microcolonies.

CASPOFUNGIN (Echinocandins)
When trailing endpoints or other growth/inhibition phenomena occur, read the MIC at the first point of significant inhibition i.e. 90% inhibition.