ACID PHOSPHATASE

This package insert contains information to run the Acid Phosphatase assay on the ARCHITECT c Systems™ and the AEROSET System.

NOTE: Changes Highlighted

NOTE: This package insert must be read carefully prior to product use. Package insert instructions must be followed accordingly. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Customer Support
United States: 1-877-4ABBOTT
Canada: 1-800-387-8378 (English speaking customers)
1-800-465-2675 (French speaking customers)
International: Call your local Abbott representative

Symbols in Product Labeling

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONC</td>
<td>Concentration</td>
</tr>
<tr>
<td>EC/REP</td>
<td>Authorized Representative in the European Community</td>
</tr>
<tr>
<td>INGRED</td>
<td>Ingredients</td>
</tr>
<tr>
<td>IVD</td>
<td>In vitro diagnostic medical device</td>
</tr>
<tr>
<td>LOT</td>
<td>Batch code/Lot number</td>
</tr>
<tr>
<td>LIQUID STABILIZER</td>
<td>Liquid Stabilizer</td>
</tr>
<tr>
<td>RT</td>
<td>Reagent 1</td>
</tr>
<tr>
<td>REF</td>
<td>Catalog number/List number</td>
</tr>
<tr>
<td>SN</td>
<td>Serial number</td>
</tr>
<tr>
<td>I</td>
<td>Consult instructions for use</td>
</tr>
<tr>
<td>Manufacturer</td>
<td></td>
</tr>
<tr>
<td>Temperature limitation</td>
<td></td>
</tr>
<tr>
<td>Use by/Expiration date</td>
<td></td>
</tr>
</tbody>
</table>
INTENDED USE
The Acid Phosphatase assay is used for the quantitation of acid phosphatase in human serum.

NOTE: This method is for the measurement of total acid phosphatase, and is not specific for prostatic acid phosphatase enzyme.

SUMMARY AND EXPLANATION OF TEST
The greatest concentration of acid phosphatase (ACP) activity occurs in liver, spleen, milk, erythrocytes, platelets, bone marrow, and the prostate gland. The last is the richest source, and it contributes a small proportion of the enzyme present in sera from healthy males. Increasing levels of ACP are consistent with prostatic cancer.

The optimal pH for the individual ACPs varies depending on the tissues from which they are obtained. The observed pH optimum also varies with the substrate on which the enzyme acts; the more acidic the substrate, the lower the pH at which maximum activity is obtained. The ACPs are unstable, especially at temperatures above 37°C and at pH levels above 7.0. Some of the enzyme forms in serum (especially the prostatic enzyme) are particularly labile and more than 50% of the ACP activity may be lost in 1 hour at room temperature. Acidification of the serum specimen to a pH below 6.5 aids in stabilizing the enzyme.

PRINCIPLES OF PROCEDURE
Acid Phosphatase catalyzes the hydrolysis of alpha-naphthylphosphate, liberating the alpha-naphthol and phosphate. The alpha-naphthol is then coupled with diazotized 2-amino-5-chlorotoluene (Fast Red TR) to form diazo dye which has a strong absorbance at 405 nm. The increase in absorbance is directly proportional to the level of ACP in the sample. The diazo dye is measured bichromatically at 412/660 nm on the ARCHITECT c8000 System and the AEROSET System; 416/660 nm on the ARCHITECT c16000 System.

Methodology: Alpha-naphthylphosphate

REAGENTS

Reagent Kit
[REF 9087] Acid Phosphatase is supplied as a single reagent kit which contains:
- [RT] 6 x 20 mL
- Liquid Stabilizer 2 x 20 mL
- Funnels (6)
- Bar code labeled cartridges (6)

Estimated tests per kit: 623

Calculation is based on the minimum reagent fill volume per kit.

Reactive Ingredients Concentration

[RT] α-Naphthylphosphate Disodium Salt 3 mmol/L
4-Chloro-2-Methylbenzenediazonium Salt 1 mmol/L

Liquid Stabilizer: Acetate Buffer 3 mol/L

REAGENT HANDLING AND STORAGE

Reagent Handling
Remove air bubbles, if present in the reagent cartridge, with a new applicator stick. Alternatively, allow the reagent to sit at the appropriate storage temperature to allow the bubbles to dissipate. To minimize volume depletion, do not use a transfer pipette to remove the bubbles.

CAUTION: Reagent bubbles may interfere with proper detection of reagent level in the cartridge, causing insufficient reagent aspiration which could impact results.

Reagent Storage
Unopened reagents are stable until the expiration date when stored at 2 to 8°C. Do not pool reagents.

Reconstituted Acid Phosphatase reagent [RT] is stable for 5 days when stored at 2 to 8°C and protected from light. [RT] is stable for 5 days uncapped, onboard, and protected from light.

Liquid Stabilizer reagent is a ready-to-use liquid and is stable until the expiration date when stored at 2 to 8°C.

REAGENT HANDLING AND STORAGE (Continued)

Instructions for Use
1. Remove the [RT] reagent cap.
2. Prepare the Working Reagent by adding 20 mL of Type II water to the [RT] bottle.

3. Replace the [RT] reagent cap and mix by gentle inversion until completely dissolved.
4. Pour the contents into one of the empty bar code labeled cartridges provided with the reagent kit.
Remove air bubbles, if present in the cartridge, with a new applicator stick.
5. Place the cartridge in Reagent Supply Center 1.

WARNINGS AND PRECAUTIONS

Precautions for Users
1. For in vitro diagnostic use.
2. Do not use components beyond the expiration date.
3. Do not mix materials from different kit lot numbers.
4. Do not mix reagents prepared at different times.
5. Do not reuse the reagent containers, bottles, caps, or plugs due to the risk of contamination and the potential to compromise reagent performance.
6. CAUTION: Bottle stopper contains dry natural rubber.
7. CAUTION: This product requires the handling of human specimens.

Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may take longer to complete their clotting processes. Fibrin clots may subsequently form in these sera and the clots could cause erroneous test results.

NOTE: Use of sample interference indices may assist in the determination of sample integrity. Refer to instrument-specific Sample Interference Indices (HIL) application sheets.

Refer to the specimen collection tube manufacturer’s instructions for processing and handling requirements.

For total sample volume requirements, refer to the instrument-specific ASSAY PARAMETERS section of this package insert and Section 5 of the instrument-specific operations manual.

SPECIMEN COLLECTION AND HANDLING

Suitable Specimens
Serum is the acceptable specimen.

Serum samples must be stabilized (i.e., acidified) by the addition of 50 µL of Liquid Stabilizer for every 1 mL of serum.

Serum: Use acidified, nonhemolyzed, nonicteric, nonlipemic serum with or without gel barrier collected by standard venipuncture techniques in glass or plastic tubes. Ensure complete clot formation has taken place prior to centrifugation. Separate from red blood cells or gel as soon after collection as possible.

Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may take longer to complete their clotting processes. Fibrin clots may subsequently form in these sera and the clots could cause erroneous test results.

NOTE: Use of sample interference indices may assist in the determination of sample integrity. Refer to instrument-specific Sample Interference Indices (HIL) application sheets.

Refer to the specimen collection tube manufacturer’s instructions for processing and handling requirements.

For total sample volume requirements, refer to the instrument-specific ASSAY PARAMETERS section of this package insert and Section 5 of the instrument-specific operations manual.

Specimen Storage
Serum: Separated, acidified serum should be analyzed immediately.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Maximum Storage</th>
<th>Bibliographic Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 to 8°C</td>
<td>3 days</td>
<td>7, 8</td>
</tr>
<tr>
<td>-20°C</td>
<td>6 months</td>
<td>7, 8</td>
</tr>
<tr>
<td>-70°C</td>
<td>indefinitely</td>
<td>9</td>
</tr>
</tbody>
</table>

NOTE: Stored specimens must be inspected for particulates. If present, mix and centrifuge the specimen to remove particulates prior to testing.
PROCEDURE
Materials Provided
[REF 9087 Acid Phosphatase Reagent Kit]

Materials Required but not Provided
• Control Material
• Type II Water
• Saline (0.85% to 0.90% NaCl) for specimens that require dilution

Assay Procedure
For a detailed description of how to run an assay, refer to Section 5 of the instrument-specific operations manual.

Specimen Dilution Procedures
The ARCHITECT c Systems and the AEROSET System have automatic dilution features; refer to Section 2 of the instrument-specific operations manual for additional information.

Serum: Specimens with acid phosphatase values exceeding 87.9 U/L are flagged and may be diluted using the Automated Dilution Protocol or the Manual Dilution Procedure.

Automated Dilution Protocol
If using the Automated Dilution Protocol, the system performs a dilution of the specimen and automatically corrects the enzyme activity value by multiplying the result by the appropriate dilution factor. To set up the automatic dilution feature, refer to Section 2 of the instrument-specific operations manual for additional information.

Manual Dilution Procedure
Manual dilutions should be performed as follows:
• Use saline (0.85% to 0.90% NaCl) to dilute the sample.
• The operator must enter the dilution factor in the patient or control order screen. The system uses this dilution factor to automatically correct the enzyme activity value by multiplying the result by the entered factor.
• If the operator does not enter the dilution factor, the result must be multiplied by the appropriate dilution factor before reporting the result.

NOTE: If a diluted sample result is flagged indicating it is less than the linear low limit, do not report the result. Rerun using an appropriate dilution.

For detailed information on ordering dilutions, refer to Section 5 of the instrument-specific operations manual.

QUALITY CONTROL
Calibration
Calibration is stable for approximately 5 days (120 hours) and is required with each change in reagent lot number. Verify calibration with at least two levels of controls according to the established quality control requirements for your laboratory. If control results fall outside acceptable ranges, recalibration may be necessary.

A calibration factor (1046.5) must be entered.
• ARCHITECT c Systems—Configure assay parameters window, Calibration view
• AEROSET System—Assay Configuration screen, Calibration page
For a detailed description of how to calibrate an assay, refer to Section 6 of the instrument-specific operations manual.

EXPECTED VALUES
Reference Range
Serum

<table>
<thead>
<tr>
<th>Range (U/L)</th>
<th>Adult</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 to 6.0</td>
<td></td>
</tr>
</tbody>
</table>

A study was conducted using 230 serum samples from 115 female and 115 male volunteers. Data were analyzed as described by Solberg and Clinical and Laboratory Standards Institute (CLSI) protocol NCCLS C28-A.11 From this study, 95% of male specimens for acid phosphatase fell within 2.2 to 4.2 U/L, with male samples ranging from 2.2 to 4.4 U/L. For female specimens, 95% of acid phosphatase specimens fell within 1.8 to 4.2 U/L, with female samples ranging from 1.6 to 4.5 U/L. It is recommended that each laboratory determine its own reference range based upon its particular locale and population characteristics.

SPECIFIC PERFORMANCE CHARACTERISTICS
Linearity
Acid Phosphatase is linear up to 87.9 U/L. Linearity was verified using CLSI protocol NCCLS EP6-P.15

Limit of Detection (LOD)
The LOD for Acid Phosphatase is 0.7 U/L. The LOD is the mean concentration of an analyte-free sample + 2 SD, where SD = the pooled, within-run standard deviation of the analyte-free sample.
A study performed on an ARCHITECT c System and an AEROSET System produced an LOD for Acid Phosphatase of 0.38 U/L.

Limit of Quantitation (LOQ)
The LOQ for Acid Phosphatase is 0.73 U/L. The LOQ is the analyte concentration at which the CV = 20%.

Interfering Substances
Interference studies were conducted using CLSI protocol NCCLS EP7-P.13 Interference effects were assessed by Dose Response and Paired Difference methods, at the medical decision level of the analyte. Expected values are for total acid phosphatase.

<table>
<thead>
<tr>
<th>Interfering Substance</th>
<th>Interferent Concentration</th>
<th>Target (U/L)</th>
<th>Observed (% of Target)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bilirubin 3.8 mg/dL (65 µmol/L)</td>
<td>4</td>
<td>5.9</td>
<td>54.4</td>
</tr>
<tr>
<td>Hemoglobin 62 mg/dL (0.62 g/L)</td>
<td>4</td>
<td>6.5</td>
<td>48.5</td>
</tr>
<tr>
<td>Human Triglyceride 200 mg/dL (2.26 mmol/L)</td>
<td>4</td>
<td>6.0</td>
<td>85.3</td>
</tr>
<tr>
<td>Intraflag 125 mg/dL (1.25 g/L)</td>
<td>4</td>
<td>6.5</td>
<td>95.1</td>
</tr>
<tr>
<td>Intralipid 250 mg/dL (2.50 g/L)</td>
<td>4</td>
<td>6.5</td>
<td>84.0</td>
</tr>
</tbody>
</table>

Do not use samples with elevated bilirubin, hemoglobin, or triglyceride. These substances showed greater than 10% interference.

Bilirubin solutions at the above concentrations were prepared by addition of a bilirubin stock to human serum pools. Hemoglobin solutions at the above concentrations were prepared by addition of hemolsate to human serum pools. Human triglyceride solutions at the above concentrations were prepared by mixing an elevated triglyceride human serum pool with a normal triglyceride human serum pool. Intralipid solutions at the above concentrations were prepared by addition of Intralipid to human serum pools.
SPECIFIC PERFORMANCE CHARACTERISTICS (Continued)

Precision
The imprecision of the Acid Phosphatase assay is ≤ 7.3% Total CV. Representative data from studies using CLSI protocol NCCLS EP5-A14 are summarized below.

<table>
<thead>
<tr>
<th>Control Level</th>
<th>Level 1</th>
<th>Level 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Mean (U/L)</td>
<td>3.5</td>
<td>30.3</td>
</tr>
<tr>
<td>Within Run SD</td>
<td>0.08</td>
<td>0.21</td>
</tr>
<tr>
<td>%CV</td>
<td>2.3</td>
<td>0.7</td>
</tr>
<tr>
<td>Between Run SD</td>
<td>0.06</td>
<td>0.66</td>
</tr>
<tr>
<td>%CV</td>
<td>1.7</td>
<td>2.2</td>
</tr>
<tr>
<td>Between Day SD</td>
<td>0.11</td>
<td>0.45</td>
</tr>
<tr>
<td>%CV</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Total SD</td>
<td>0.15</td>
<td>0.82</td>
</tr>
<tr>
<td>%CV</td>
<td>4.3</td>
<td>2.7</td>
</tr>
</tbody>
</table>

Method Comparison
Correlation studies were performed using CLSI protocol NCCLS EP9-A15.

<table>
<thead>
<tr>
<th>Comparative Method</th>
<th>AEROSET vs.</th>
<th>ARCHITECT vs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>72</td>
<td>83</td>
</tr>
<tr>
<td>Y - Intercept</td>
<td>0.417</td>
<td>0.208</td>
</tr>
<tr>
<td>Correlation Coefficient</td>
<td>0.995</td>
<td>0.999</td>
</tr>
<tr>
<td>Slope</td>
<td>1.057</td>
<td>0.980</td>
</tr>
<tr>
<td>Range (U/L)*</td>
<td>1.9 to 50.8</td>
<td>2.10 to 75.30</td>
</tr>
</tbody>
</table>

* AEROSET Range

BIBLIOGRAPHY

TRADEMARKS
AEROSET and ARCHITECT are registered trademarks of Abbott Laboratories.
cSystem is a trademark of Abbott Laboratories.
All other trademarks, brands, product names, and trade names are the property of their respective companies.
ARCHITECT c SYSTEMS ASSAY PARAMETERS

Acid Phosphatase Serum—Conventional and SI Units

Configure assay parameters — General

<table>
<thead>
<tr>
<th>Assay: ACP</th>
<th>Type: Photometric</th>
<th>Version: 1</th>
</tr>
</thead>
</table>

Reaction definition

- **Rate up**
- **Reagent / Sample**
- **Validity checks**

<table>
<thead>
<tr>
<th>Wavelength:</th>
<th>Main: 16 – 24</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last required read:</td>
<td>24</td>
</tr>
<tr>
<td>Absorbance range:</td>
<td>0.0100 – 2.0000</td>
</tr>
<tr>
<td>Sample blank type:</td>
<td>None</td>
</tr>
</tbody>
</table>

Configure assay parameters — Calibration

<table>
<thead>
<tr>
<th>Assay: ACP</th>
<th>Calibration method: Factor</th>
<th>Factor: 1046.5000</th>
</tr>
</thead>
</table>

Calibrators

<table>
<thead>
<tr>
<th>Calibrator set:</th>
<th>Concentration:</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>Water 0.0</td>
</tr>
</tbody>
</table>

Replicates: 3 [Range 1 – 3]

Configure assay parameters — SmartWash

| COMPONENT REAGENT / ASSAY WASH Volume Replicates |
| --- | --- |
| Cuvette | Trig 10% Detergent B*** 345 |

*** Select “Detergent B” for software prior to Version 2.2.

Configure assay parameters — Results

<table>
<thead>
<tr>
<th>Assay: ACP</th>
<th>Result units: U/L</th>
</tr>
</thead>
</table>

GENDER AGE (UNITS) NORMAL EXTREME

| Either | 0 – 130 (Y) | 0.0 – 6.0 |

Configure result units

<table>
<thead>
<tr>
<th>Assay: ACP</th>
<th>Version: 1</th>
</tr>
</thead>
</table>

Result units: U/L

<table>
<thead>
<tr>
<th>Decimal places:</th>
<th>Correlation factor:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

| Intercep: | 0.0000 |

Configure assay parameters — urea

- **Reagent / Sample**
- **Validity checks**

<table>
<thead>
<tr>
<th>Reaction mode: Rate up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex:</td>
</tr>
<tr>
<td>Absorbance range:</td>
</tr>
<tr>
<td>Color Correction:</td>
</tr>
</tbody>
</table>

Configure assay parameters — urea

- **Reagent / Sample**
- **Validity checks**

<table>
<thead>
<tr>
<th>Reaction mode: Rate up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex:</td>
</tr>
<tr>
<td>Absorbance range:</td>
</tr>
<tr>
<td>Color Correction:</td>
</tr>
</tbody>
</table>

† Due to differences in instrument systems and unit configurations, version numbers may vary.

†† The c8000 Primary Wavelength is 412 nm; the c16000 System Primary Wavelength is 416 nm.

‡‡ The linear low value (Low-Linearity) is LOQ rounded up to the number of decimal places defined in the decimal places parameter field.
Acid Phosphatase Serum—Conventional and SI Units

Assay Configuration: Outline Page

<table>
<thead>
<tr>
<th>Assay Name</th>
<th>Assay #</th>
<th>Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACP</td>
<td>47</td>
<td>A-Line</td>
</tr>
</tbody>
</table>

Quantitative Ranges

<table>
<thead>
<tr>
<th>Min Text</th>
<th>Min</th>
<th>Panic-L</th>
<th>L-Reference-H</th>
<th>Panic-H</th>
<th>Max</th>
<th>Max Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 0.4*</td>
<td>0.4*</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>87.9*</td>
<td>> 87.9*</td>
</tr>
<tr>
<td>0.8**</td>
<td></td>
<td>L-Linear Range-H</td>
<td>87.9</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reference Ranges

<table>
<thead>
<tr>
<th>Age</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 Year</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 Year</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>0 Year</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Qualitative Ranges

N/A

Assay Configuration: Base Page

<table>
<thead>
<tr>
<th>Reaction Mode</th>
<th>Wavelength-Prim/Sec</th>
<th>Read time-Main/Flex</th>
<th>Linearity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>RATE UP</td>
<td>412 / 660</td>
<td>16 – 24 / 0 – 0</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Blank Test</th>
<th>Blank Read Time</th>
<th>Abs Window</th>
<th>Abs Limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____ (_____)</td>
<td>0 – 0</td>
<td>0 – 0</td>
<td>0.01 – 2.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dil 1</th>
<th>S.Vol</th>
<th>DS.Vol</th>
<th>D.Vol</th>
<th>Rgt Name/Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dil 2</th>
<th>S.Vol</th>
<th>DS.Vol</th>
<th>D.Vol</th>
<th>Rgt Name/Pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type#</th>
<th>Rgt Name/Pos</th>
<th>R.Vol</th>
<th>W.Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ACP0011 – ___*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reaction Check</th>
<th>Read Time – A/B</th>
<th>Range</th>
<th>Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>_____</td>
<td>1 – 1 / 1 – 1</td>
<td>0.0 – 0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Factor/Intercept</th>
<th>Decimal Places</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 / 0.0</td>
<td>1</td>
<td>U/L</td>
</tr>
</tbody>
</table>

Assay Configuration: Calibration Page

<table>
<thead>
<tr>
<th>Calib Mode</th>
<th>Factor</th>
<th>Interval (H)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1046.5</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Blank/Calib Replicates</th>
<th>Span</th>
<th>Span Abs Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 / 0</td>
<td>BLK – 1</td>
<td>0.0 – 0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>S.Vol</th>
<th>DS.Vol</th>
<th>D.Vol</th>
<th>W.Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td>BLK</td>
<td>12.0</td>
<td>0.0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| C1 | 2.0 | 0.0 | 0 | 0 |

| C2 | 2.0 | 0.0 | 0 | 0 |

<table>
<thead>
<tr>
<th>BLK Abs Range</th>
<th>Cal Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0 – 0.0</td>
<td></td>
</tr>
</tbody>
</table>

Assay Configuration: SmartWash Page

<table>
<thead>
<tr>
<th>Rgt Probe</th>
<th>Reagent</th>
<th>Wash</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuvette</th>
<th>Assay Name</th>
<th>Wash</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>___</td>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample Probe</th>
<th>Wash</th>
</tr>
</thead>
<tbody>
<tr>
<td>___</td>
<td>___</td>
</tr>
</tbody>
</table>

Refer to **Assay Configuration** in *Section 2* of the AEROSET System Operations Manual for information regarding assay parameters.

* User defined or instrument defined.

** The linear low value (L-Linear Range) is LOQ rounded up to the number of decimal places defined in the decimal places parameter field.