This package insert must be read carefully prior to use. Package insert instructions must be followed accordingly. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Key to symbols used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>List Number</td>
</tr>
<tr>
<td>IVD</td>
<td>For In Vitro Diagnostic Use</td>
</tr>
<tr>
<td>8°C</td>
<td>Store at 2-8°C</td>
</tr>
<tr>
<td>!</td>
<td>CAUTION: Handle human sourced materials as potentially infectious. Consult instructions for use. (Infection Risk)</td>
</tr>
<tr>
<td></td>
<td>Expiration Date</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use.</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use.</td>
</tr>
<tr>
<td>CALIBRATOR</td>
<td>Calibrator Kit</td>
</tr>
<tr>
<td>CONTROLS</td>
<td>Control Kit</td>
</tr>
<tr>
<td>ASSAY CD-ROM</td>
<td>Assay CD-ROM</td>
</tr>
<tr>
<td>SN</td>
<td>Serial Number</td>
</tr>
<tr>
<td>CONTROL NO.</td>
<td>Control Number</td>
</tr>
<tr>
<td>REAGENT LOT</td>
<td>Reagent Lot</td>
</tr>
<tr>
<td>REACTION VESSELS</td>
<td>Reaction Vessels</td>
</tr>
<tr>
<td>SAMPLE CUPS</td>
<td>Sample Cups</td>
</tr>
<tr>
<td>SEPTUM</td>
<td>Septum</td>
</tr>
<tr>
<td>REPLACEMENT CAPS</td>
<td>Replacement Caps</td>
</tr>
</tbody>
</table>

See REAGENTS section for a full explanation of symbols used in reagent component naming.
NAME
ARCHITECT® Anti-HBe

INTENDED USE
The ARCHITECT Anti-HBe assay is a chemiluminescent microparticle immunoassay (CMA) for the qualitative detection of antibody to hepatitis B e antigen (anti-HBe) in human serum and plasma and is indicated as an aid in the diagnosis and monitoring of hepatitis B viral infection.

SUMMARY AND EXPLANATION OF TEST
Hepatitis B e antigen (HBeAg) and its antibody (anti-HBe) are found in association with hepatitis B viral infection. HBeAg is first detectable in the early phase of hepatitis B viral infection, after the appearance of hepatitis B surface antigen (HBsAg). The titers of both antigens rise rapidly during the period of viral replication in acute infection. Seroconversion from HBeAg to anti-HBe during acute hepatitis B infection is usually indicative of resolution of infection and a reduced level of infectivity. A negative HBeAg result may indicate (1) early acute infection before the peak of viral replication or (2) early convalescence when HBeAg has declined below detectable levels. The presence of anti-HBe serves to distinguish between these two phases. A subset of chronic hepatitis B patients have no detectable HBeAg in serum, but are positive for anti-HBe; these patients may also be positive for serum hepatitis B virus DNA. Additionally, HBeAg/antibody seroconversion is used as an indicator of virological response when treating patients with chronic hepatitis B.

BIOLOGICAL PRINCIPLES OF THE PROCEDURE
The ARCHITECT Anti-HBe assay is a competitive two-step immunoassay for the qualitative detection of anti-HBe in human serum and plasma using CMIA technology with flexible assay protocols, referred to as Chemilumex®. In the first step, sample, neutralizing reagent, and anti-HBe (mouse, monoclonal) coated paramagnetic microparticles are combined. Anti-HBe present in the sample binds to the recombinant HBeAg present in the neutralizing reagent. Unbound recombinant HBeAg is available to bind to the anti-HBe coated microparticles. After washing, acridinium-labeled anti-HBe conjugate is added in the second step. Following another wash cycle, pre-trigger and trigger solutions are added to the reaction mixture. The resulting chemiluminescent reaction is measured as relative light units (RLUs). An inverse relationship exists between the amount of anti-HBe in the sample and the RLUs detected by the ARCHITECT® system optics. The presence or absence of anti-HBe in the sample is determined by comparing the chemiluminescent signal in the reaction to the cutoff signal determined from an ARCHITECT Anti-HBe calibration. If the chemiluminescent signal of the reaction is greater than the cutoff signal, then the sample is considered nonreactive for anti-HBe.

For additional information on system and assay technology, refer to the ARCHITECT System Operations Manual, Section 3.

REAGENTS
Reagent Kit, 100 Tests
ARCHITECT Anti-HBe Reagent Kit (6C34)

- **MICROPARTICLES**: 1 or 4 Bottle(s) (6.6 mL) Microparticles: Antibody to Hepatitis B e Antigen (mouse, monoclonal) coated microparticles in phosphate buffer with protein (bovine) stabilizer. Minimum concentration: 0.08% solids. Preservatives: ProClin® 300 and other Antimicrobial Agents.
- **CONJUGATE**: 1 or 4 Bottle(s) (5.9 mL) Conjugate: Acidinium-labeled antibody to Hepatitis B e Antigen (mouse, monoclonal) conjugate in MES buffer with protein (bovine) stabilizer. Minimum concentration: 0.08 µg/mL. Preservative: ProClin 300.
- **NEUTRALIZING REAGENT**: 1 or 4 Bottle(s) (5.9 mL) Neutralizing Reagent: Hepatitis B e Antigen (recombinant DNA) in TRIS buffer with protein (bovine) stabilizer. Minimum concentration: 6.7 PEI U/mL. Preservatives: Antimicrobial Agents.

Other Reagents
ARCHITECT / Pre-Trigger Solution
- **PRE-TRIGGER SOLUTION**: Pre-Trigger Solution containing 1.32% (w/v) hydrogen peroxide.
- **TRIGGER SOLUTION**: Trigger Solution containing 0.35N sodium hydroxide.
- **WASH BUFFER**: Wash Buffer containing phosphate buffered saline solution. Preservatives: Antimicrobial Agents.

WARNINGS AND PRECAUTIONS
- **IVD: For In Vitro Diagnostic Use.**
- **Package insert instructions must be followed accordingly. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Safety Precautions
- **CAUTION: This product requires the handling of human specimens. It is recommended all human sourced material be considered potentially infectious and be handled in accordance with the OSHA Standard on Bloodborne Pathogens or other appropriate biosafety practices as: Irritant (Xi). The following are the appropriate Risk (R) and Safety (S) phrases:
- R43 May cause sensitization by skin contact.
- S24 Avoid contact with skin.
- S35 This material and its container must be disposed of in a safe way.
- S37 Wear suitable gloves.
- S46 If swallowed, seek medical advice immediately and show this container or label.

- **ARCHITECT / Trigger Solution contains sodium hydroxide (NaOH) and is classified per applicable European Community (EC) Directives as: Irritant (Xi). The following are the appropriate Risk (R) and Safety (S) phrases:
- R43 May cause sensitization by skin contact.
- S24 Avoid contact with skin.
- S26 In case of contact with eyes, rinse immediately with plenty of water and seek medical advice.
- S35 This material and its container must be disposed of in a safe way.
- S36/39 Wear suitable protective clothing and eye/face protection.
- S46 If swallowed, seek medical advice immediately and show this container or label.

- **Information for European customers:** For product not classified as dangerous per European Directive 1999/45/EC - Safety data sheet available for professional user on request.
- **For a detailed discussion of safety precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 8.

Handling Precautions
- Do not use reagent kits beyond the expiration date.
- Do not pool reagents within a reagent kit or between reagent kits.
- Prior to loading the ARCHITECT Anti-HBe Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend microparticles that may have settled during shipment. For microparticle mixing instructions, refer to the **PROCEDURE, Assay Procedure** section of this package insert.
SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

- Human serum (including serum collected in serum separator tubes) or plasma collected in potassium EDTA, sodium citrate, sodium heparin, ACD-B, CPDA-1, CPD, and potassium oxalate may be used in the ARCHITECT Anti-HBe assay. Other anticoagulants have not been validated for use with the ARCHITECT Anti-HBe assay. Follow the manufacturer’s processing instructions for serum or plasma collection tubes.

- The ARCHITECT i System does not provide the capability to verify specimen type. It is the responsibility of the operator to verify the correct specimen types are used in the ARCHITECT Anti-HBe assay.

- Use caution when handling patient specimens to prevent cross contamination. Use of disposable pipettes or pipette tips is recommended.

- This assay was designed and validated for use with human serum or plasma from individual patient and donor specimens. Pooled specimens must not be used since the accuracy of their test results has not been validated.

- Do not use heat-inactivated specimens.

- Do not use grossly hemolyzed specimens.

- Specimens with obvious microbial contamination should not be used.

- Performance has not been established using cadaver specimens or body fluids other than human serum or plasma.

- For optimal results, inspect all samples for bubbles. Remove bubbles with an applicator stick prior to analysis. Use a new applicator stick for each sample to prevent cross contamination.

- Ensure that complete clot formation in serum specimens has taken place prior to centrifugation. Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy, may exhibit increased clotting time. If the specimen is centrifuged before a complete clot forms, the presence of fibrin may cause erroneous results or aspiration errors.

- Specimens from heparinized patients may be partially coagulated, and erroneous results could occur due to the presence of fibrin. To prevent this phenomenon, draw the specimen prior to heparin therapy.

- For accurate results, serum and plasma specimens must be free of fibrin, red blood cells, or other particulate matter.

- Gravity separation is not sufficient for specimen preparation. Specimens must be separated from clots or red blood cells using the centrifugation instructions recommended by the collection tube manufacturer.

- After specimens have been processed according to the collection tube manufacturer’s instructions, they must be transferred to a centrifuge tube and centrifuged at >10,000 RCF (Relative Centrifugal Force) for 10 minutes if:
 - They contain red blood cells, clots, or particulate matter.
 - They require repeat testing.
 - They were frozen and thawed.

- Transfer clarified specimen to a sample cup or secondary tube for testing.

- Mix thawed specimens by inverting 180 degrees from upright and return, for a total of 10 inversion cycles. Visually inspect the specimens for the absence of stratification. If layering or stratification is observed, repeat until specimens are visibly homogeneous.

- Centrifuge at > 10,000 RCF for 10 minutes to remove particulate matter and to ensure consistency in the results.

- No qualitative differences were observed between experimental controls and the 23 nonreactive or spiked reactive specimens subjected to 6 freeze/thaw cycles; however, multiple freeze/thaw cycles should be avoided.

INSTRUMENT PROCEDURE

- The ARCHITECT Anti-HBe assay file must be installed on the ARCHITECT i System from the ARCHITECT i System Operations Manual, Section 10.

NOTE: For details on configuring the ARCHITECT i System to use grayzone interpretations, refer to the ARCHITECT i System Operations Manual, Section 2.

- The default result unit for the ARCHITECT Anti-HBe assay is S/CO (Sample to Cutoff ratio). An alternate result unit, %Inh (Percent Inhibition), may be selected for reporting results by editing assay parameter “Result concentration units”, to %Inh. For information on editing the Result concentration units, refer to the ARCHITECT i System Operations Manual, Section 2.

- For information on printing assay parameters, refer to the ARCHITECT i System Operations Manual, Section 5.

- For a detailed description of system procedures, refer to the ARCHITECT i System Operations Manual.

INSTRUMENT PROCEDURE

- The ARCHITECT Anti-HBe Reagent Kit must be stored at 2-8°C in an upright position and may be used immediately after removal from 2-8°C storage.

- When stored and handled as directed, reagents are stable until the expiration date.

- The ARCHITECT Anti-HBe Reagent Kit may be stored on board the ARCHITECT i System for a maximum of 30 days. After 30 days, the reagent kit must be discarded. For information on tracking onboard expiration date, refer to the ARCHITECT System Operations Manual, Section 7.

- Reagents may be stored on or off the ARCHITECT i System. If reagents are removed from the system, store them at 2-8°C (with septums and replacement caps) in an upright position. For reagents stored off the system, it is recommended they be stored in their original trays and boxes to ensure they remain upright. If the microparticle bottle does not remain upright (with the septum installed) while in refrigerated storage off the system, the reagent kit must be discarded. After reagents are removed from the system, you must initiate a scan to update the onboard stability timer.

Indications of Reagent Deterioration

When a control value is out of the specified range, it may indicate deterioration of the reagents or errors in technique. Associated test results are invalid and samples must be retested. Assay recalibration may be necessary. For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.

- Septums MUST be used to prevent reagent evaporation and contamination, and to ensure reagent integrity. Reliability of assay results cannot be guaranteed if septums are not used according to the instructions in this package insert.

- To avoid contamination, wear clean gloves when placing a septum on an uncapped reagent bottle.

- Prior to placing the septum on an uncapped reagent bottle, squeeze the septum in half to confirm that the slits are open. If the slits appear sealed, continue to gently squeeze the septum to open the slits.

- Once a septum has been placed on an open reagent bottle, do not invert the bottle as this will result in reagent leakage and may compromise assay results.

- Over time, residual liquids may dry on the septum surface. These are typically dried salts and have no effect on assay efficacy.

- For a detailed discussion of handling precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 2.

- Reagents may be stored on or off the ARCHITECT i System. If reagents are removed from the system, store them at 2-8°C (with septums and replacement caps) in an upright position. For reagents stored off the system, it is recommended they be stored in their original trays and boxes to ensure they remain upright. If the microparticle bottle does not remain upright (with the septum installed) while in refrigerated storage off the system, the reagent kit must be discarded. After reagents are removed from the system, you must initiate a scan to update the onboard stability timer.

Indications of Reagent Deterioration

When a control value is out of the specified range, it may indicate deterioration of the reagents or errors in technique. Associated test results are invalid and samples must be retested. Assay recalibration may be necessary. For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.

INSTRUMENT PROCEDURE

- The ARCHITECT Anti-HBe assay file must be installed on the ARCHITECT i System from the ARCHITECT i System Operations Manual, Section 10.

NOTE: For details on configuring the ARCHITECT i System to use grayzone interpretations, refer to the ARCHITECT System Operations Manual, Section 2.

- The default result unit for the ARCHITECT Anti-HBe assay is S/CO (Sample to Cutoff ratio). An alternate result unit, %Inh (Percent Inhibition), may be selected for reporting results by editing assay parameter “Result concentration units”, to %Inh. For information on editing the Result concentration units, refer to the ARCHITECT System Operations Manual, Section 2.

- For information on printing assay parameters, refer to the ARCHITECT System Operations Manual, Section 5.

- For a detailed description of system procedures, refer to the ARCHITECT System Operations Manual.
• Centrifuged specimens with a lipid layer on the top must be transferred to a sample cup or secondary tube. Care must be taken to transfer the clarified specimen without the lipemic material.
• Specimens may be stored on or off the clot or red blood cells for up to 7 days at 2-8°C or off the clot or red blood cells for 3 days at 15-30°C. Plasma specimens that have been stored at 2-8°C more than three days without removal from red blood cells should be re-centrifuged before analysis, to avoid erroneous results. If testing will be delayed more than 7 days, remove serum or plasma from the clot, serum separator, or red blood cells and store frozen (-20°C or colder).
• When shipped, specimens must be packaged and labelled in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances. Specimens may be shipped at 2-8°C (wet ice), or -20°C or colder (dry ice). Do not exceed the storage time limitations listed above. Prior to shipment, it is recommended that specimens be removed from the clot, serum separator, or red blood cells.
• No qualitative performance differences were observed between experimental controls and the 22 nonreactive or the 22 spiked reactive specimens tested with elevated levels of hemoglobin (≤ 500 mg/dL) or triglycerides (≤ 3,000 mg/dL).
• No qualitative performance differences were observed between experimental controls and the 23 nonreactive or the 23 spiked reactive specimens tested with elevated levels of bilirubin (≤ 20 mg/dL).
• No qualitative performance differences were observed between experimental controls and the 25 nonreactive or the 25 spiked reactive specimens tested with elevated levels of protein (≤ 12 g/dL), or red blood cells (≤ 0.4% v/v).

PROCEDURE

Materials Provided:
• 6C34 ARCHITECT Anti-HBe Reagent Kit

Materials Required but not Provided:
• ARCHITECT /System
• ARCHITECT / ASSAY CD-ROM
• 6C34-01 ARCHITECT Anti-HBe CALIBRATOR
• 6C34-10 ARCHITECT Anti-HBe CONTROLS
• ARCHITECT / PRE-TRIGGER SOLUTION
• ARCHITECT / TRIGGER SOLUTION
• ARCHITECT / WASH BUFFER
• ARCHITECT / REACTION VESSELS
• ARCHITECT / SAMPLE CUPS
• ARCHITECT / SEPTUM
• ARCHITECT / REPLACEMENT CAPS
• Pipettes or pipette tips (optional) to deliver the volumes specified on the patient or control order screen.

For information on materials required for maintenance procedures, refer to the ARCHITECT System Operations Manual, Section 9.

Assay Procedure

• Before loading the ARCHITECT Anti-HBe Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend microparticles that may have settled during shipment.
 • Invert the microparticle bottle 30 times.
 • Visually inspect the bottle to ensure microparticles are resuspended. If microparticles are still adhered to the bottle, continue to invert the bottle until the microparticles have been completely resuspended.
 • If the microparticles do not resuspend, DO NOT USE. Contact your ABBOTT representative.
• Once the microparticles have been resuspended, remove and discard the cap. Wearing clean gloves, remove a septum from the bag. Squeeze the septum in half to confirm that the slits are open. Carefully snap the septum onto the top of the bottle.
• Order calibration, if necessary.

For information on ordering calibrations, refer to the ARCHITECT System Operations Manual, Section 6.

• Order tests.
• For information on ordering patient specimens and controls and for general operating procedures, refer to the ARCHITECT System Operations Manual, Section 5.

• Load the ARCHITECT Anti-HBe Reagent Kit on the ARCHITECT i System.
 • Verify that all necessary assay reagents are present. Ensure that septums are present on all reagent bottles.
• The minimum sample cup volume is calculated by the system and is printed on the Orderlist report. No more than 10 replicates may be sampled from the same sample cup. To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.
 • Priority: 150 µL for the first ARCHITECT Anti-HBe test plus 100 µL for each additional ARCHITECT Anti-HBe test from the same sample cup.
 • ≤ 3 hours on board: 150 µL for the first ARCHITECT Anti-HBe test plus 100 µL for each additional ARCHITECT Anti-HBe test from the sample cup.
 • ≤ 3 hours on board: additional sample volume is required. For information on sample evaporation and volumes, refer to the ARCHITECT System Operations Manual, Section 5.
• If using primary or aliquot tubes, use the sample gauge to ensure sufficient patient specimen is present.

• Prepare calibrators and controls.
 • ARCHITECT Anti-HBe Calibrator 1 and Controls should be mixed by gentle inversion (5-10 times) prior to use.
 • To obtain the recommended volume requirements for the ARCHITECT Anti-HBe Calibrator and Controls, hold the bottles vertically and dispense 10 drops of the calibrator or 4 drops of each control into each respective sample cup.
• Load samples.
 • For information on loading samples, refer to the ARCHITECT System Operations Manual, Section 5.
 • Press RUN. The ARCHITECT i System performs the following functions:
 • Moves the sample carrier to the aspiration point.
 • Loads a reaction vessel (RV) into the process path.
 • Aspirates and transfers sample into the RV.
 • Advances the RV one position and transfers neutralizing reagent and microparticles into the RV.
 • Mixes, incubates, and washes the reaction mixture.
 • Adds conjugate to the RV.
 • Mixes, incubates, and washes the reaction mixture.
 • Adds Pre-Trigger and Trigger Solutions.
 • Measures chemiluminescent emission to detect the presence of Anti-HBe in the sample.
 • Aspirates contents of RV to liquid waste and unloads RV to solid waste.
 • Calculates the result.
 • For optimal performance, it is important to follow the routine maintenance procedures defined in the ARCHITECT System Operations Manual, Section 9. If your laboratory requires more frequent maintenance, follow those procedures.

Specimen Dilution Procedures

Specimens cannot be diluted for the ARCHITECT Anti-HBe assay.

Calibration

• To perform an ARCHITECT Anti-HBe calibration, test Calibrator 1 in replicates of three. A single sample of both ARCHITECT Anti-HBe Controls must be tested to evaluate the assay calibration. Ensure that assay control values are within the ranges specified in the control package insert. The Calibrator should be priority loaded.
• Once an ARCHITECT Anti-HBe calibration is accepted and stored, all subsequent samples may be tested without further calibration unless one or both of the following occur:
 • A reagent kit with a new lot number is used.
 • Controls are out of range.
• For detailed information on how to perform an assay calibration, refer to the ARCHITECT System Operations Manual, Section 6.
QUALITY CONTROL PROCEDURES
The minimum control requirement for the ARCHITECT Anti-HBe assay is that a single sample of both the controls be tested once every 24 hours each day of use for each reagent lot. If the quality control procedures in your laboratory require more frequent use of controls to verify test results, follow your laboratory-specific procedures. The ARCHITECT Anti-HBe Control values must be within the acceptable ranges specified in the control package insert. If a control is out of its specified range, the associated test results are invalid and samples must be retested. Recalibration may be indicated.

Verification of Assay Claims
For protocols to verify package insert claims, refer to the ARCHITECT System Operations Manual, Appendix B. The ARCHITECT Anti-HBe assay belongs to method group 5.

RESULTS
The ARCHITECT / System calculates the ARCHITECT Anti-HBe Calibration 1 mean chemiluminescent signal (RLU) from 3 replicates and stores the result.

Calculation
The ARCHITECT / System calculates an ARCHITECT Anti-HBe result based on the ratio of the sample RLU to the cutoff RLU (S/CO) for each specimen and control.

- Cutoff RLU = Calibrator 1 mean RLU x 0.5
- The cutoff RLU is stored for each reagent lot calibration.
- S/CO = Sample RLU/Cutoff RLU

Example: If the Sample RLU = 15000 and the Cutoff RLU = 30000, then

\[
S/CO = \frac{15000}{30000} = 0.50
\]

The ARCHITECT / System calculates the percent inhibition (%Inh) of the sample RLU relative to the Calibrator 1 mean RLU.

\[
\% \text{Inh} = \left(1 - \frac{\text{Sample RLU}}{\text{Calibrator 1 Mean RLU}}\right) \times 100
\]

Example: If the Sample RLU = 15000 and the Calibrator 1 Mean RLU = 60000, then

\[
\% \text{Inh} = \left(1 - \frac{15000}{60000}\right) \times 100 = 75
\]

Interpretation of Results
- Specimens with S/CO values > 1.00 are considered nonreactive by the ARCHITECT Anti-HBe assay and need not be tested further.
- Specimens with S/CO values < 1.00 are considered reactive by the ARCHITECT Anti-HBe assay.
- Specimens with %Inh < 50* are considered reactive by the ARCHITECT Anti-HBe assay.
- Specimens with %Inh > 50* are considered reactive by the ARCHITECT Anti-HBe assay.
- Samples with S/CO values > 3.0 or %Inh ≤ 50 may be reactive for HBcAg and should be tested for HBeAg.
- All initially reactive specimens should be transferred to a centrifuge tube, recentrifuged at 10,000 RCF for 10 minutes and retested in duplicate. If both retest values are nonreactive, the specimen must be considered nonreactive for anti-HBe. If either of the retest values is reactive, the specimen must be considered reactive for anti-HBe by the criteria of ARCHITECT anti-HBe.
- For details on configuring the ARCHITECT / System to use grayzone interpretations, refer to the ARCHITECT System Operations Manual, Section 2.

*NOTE: Due to mathematical rounding a sample result of, for example, 49.8%Inh equals 50%Inh and is considered reactive by the ARCHITECT Anti-HBe assay.

Flags
- Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the ARCHITECT System Operations Manual, Section 5.

LIMITATIONS OF THE PROCEDURE
- If the anti-HBe results are inconsistent with clinical evidence, additional testing is suggested to confirm the result.
- For diagnostic purposes, results should be used in conjunction with patient history and other hepatitis markers for diagnosis of acute or chronic infection.
- Specimens that have been frozen and thawed and specimens containing red blood cells, clots, or particulate matter must be centrifuged prior to running the assay.
- Performance has not been established using cadaver specimens or body fluids other than human serum or plasma.
- Do not use heat-inactivated specimens.
- Do not use grossly hemolyzed specimens.
- Specimens with obvious microbial contamination should not be used.
- Specimens from heparinized patients may be partially coagulated and erroneous results could occur due to the presence of fibrin. To prevent this phenomenon, draw the specimen prior to heparin therapy.
- Specimens from patients who have received preparations of mouse monoclonal antibodies for diagnosis or therapy may contain human anti-mouse antibodies (HAMA). Such specimens may show either falsely elevated or depressed values when tested with assay kits that employ mouse monoclonal antibodies. ARCHITECT Anti-HBe reagents contain a component that reduces the effect of HAMA reactive specimens. Additional clinical or diagnostic information may be required to determine patient status.
- Heterophilic antibodies in human serum can react with reagent immunoglobulins, interfering with in vitro immunoassays. Patients routinely exposed to animals or to animal serum products can be prone to this interference and anomalous values may be observed. Additional information may be required for diagnosis.

SPECIFIC PERFORMANCE CHARACTERISTICS
Precision
The precision of the ARCHITECT Anti-HBe assay across the control range (0.21 - 2.70 S/CO) is ≤ 10%. A study was performed using a panel consisting of one nonreactive member, four diluted anti-HBe reactive members, controls, and the calibrator. Two external sites tested two different lots of the controls and the calibrator across two reagent lots (every combination), and an internal site tested three different lots of controls and calibrator across three reagent lots (every combination). All panel members were tested in replicates of three per run. The intra-run and inter-run standard deviations (SD) and percent coefficient of variation (%CV) were analyzed with a variance components analysis. The data from this study are summarized in Table 1.

<table>
<thead>
<tr>
<th>Panel member</th>
<th>Total n</th>
<th>Mean S/CO</th>
<th>SD</th>
<th>%CV SD</th>
<th>%CV SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator 1</td>
<td>516</td>
<td>2.00</td>
<td>0.096</td>
<td>4.79</td>
<td>0.097</td>
</tr>
<tr>
<td>Negative Control</td>
<td>516</td>
<td>1.97</td>
<td>0.086</td>
<td>4.38</td>
<td>0.095</td>
</tr>
<tr>
<td>Positive Control</td>
<td>516</td>
<td>0.51</td>
<td>0.027</td>
<td>5.29</td>
<td>0.029</td>
</tr>
<tr>
<td>Panel 1</td>
<td>204</td>
<td>0.11</td>
<td>0.006</td>
<td>5.84</td>
<td>0.007</td>
</tr>
<tr>
<td>Panel 2</td>
<td>204</td>
<td>0.23</td>
<td>0.008</td>
<td>3.72</td>
<td>0.010</td>
</tr>
<tr>
<td>Panel 3</td>
<td>204</td>
<td>0.47</td>
<td>0.018</td>
<td>3.76</td>
<td>0.022</td>
</tr>
<tr>
<td>Panel 4</td>
<td>204</td>
<td>0.93</td>
<td>0.044</td>
<td>4.75</td>
<td>0.047</td>
</tr>
<tr>
<td>Panel 5</td>
<td>204</td>
<td>1.70</td>
<td>0.080</td>
<td>4.69</td>
<td>0.084</td>
</tr>
</tbody>
</table>

*Representative performance data are shown. Results obtained in individual laboratories may vary.
**Inter-run variability contains intra-run variability.
The ARCHITECT Anti-HBe assay specificity for random blood donor specimens is ≥ 99.5%.

A study on a total of 1310 random blood (serum and plasma) donor specimens was performed at two clinical sites. Six specimens were reactive by ARCHITECT Anti-HBe and were also reactive for anti-HBc. The remaining 1304 specimens were nonreactive by ARCHITECT Anti-HBe. The data from this study are summarized in Table 2.

The ARCHITECT Anti-HBe assay specificity for hospitalized patient specimens is ≥ 99.0%.

A study on a total of 498 hospitalized patient specimens was performed at one clinical site. Sixty-three specimens were reactive by ARCHITECT Anti-HBe and were also reactive for anti-HBc. The remaining 435 specimens were nonreactive by ARCHITECT Anti-HBe. The data from this study are summarized in Table 2.

Table 2

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of Specimens Tested</th>
<th>Initial Reactive</th>
<th>Repeat Reactive</th>
<th>Number of Reactives by Supplemental Testing**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random Blood Donors</td>
<td>1310</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Hospitalized Patients</td>
<td>498</td>
<td>64</td>
<td>63</td>
<td>63</td>
</tr>
<tr>
<td>Total</td>
<td>1808</td>
<td>70</td>
<td>69</td>
<td>69</td>
</tr>
</tbody>
</table>

* Representative performance data are shown. Results obtained in individual laboratories and with different populations may vary.

** Supplemental testing on anti-HBe repeat reactives was performed with an anti-HBc assay.

A study was performed in which a total of 155 specimens from individuals with potentially interfering substances and disease states other than HBV (CMV, EBV, anti-HAV, anti-HCV, anti-HIV-1, HSV, rubella, HBV vaccine recipients, syphilis, urinary tract infections, rheumatoid factor, anti-nuclear autoantibodies [ANA], toxoplasmosis, alcoholic cirrhosis, pregnant females, multiple myeloma, multiparous females, dialysis patients, human anti-mouse antibodies [HAMA]) were tested by ARCHITECT Anti-HBe and were also reactive for anti-HBc. Seventeen out of 36 acute specimens were reactive and 19 were nonreactive. Out of 57 chronic specimens, 36 were reactive and 21 were nonreactive.

Table 3

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of Specimens Tested</th>
<th>Initial Reactive</th>
<th>Repeat Reactive</th>
<th>Number of Reactives by Supplemental Testing**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Potentially Interfering Substances</td>
<td>155</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>High Risk of Blood Transmissible Infections</td>
<td>75</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

* Representative performance data are shown. Results obtained in individual laboratories and with different populations may vary.

** Supplemental testing on anti-HBe repeat reactives was performed with an anti-HBc assay.

Table 4

<table>
<thead>
<tr>
<th>Population</th>
<th>Number of Specimens Tested</th>
<th>Pre-characterized Reactive for Anti-HBe Reactives</th>
<th>Reactive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-characterized Anti-HBe</td>
<td>206</td>
<td>206</td>
<td></td>
</tr>
</tbody>
</table>

* Representative performance data are shown. Results obtained in individual laboratories and with different populations may vary.

The ARCHITECT Anti-HBe assay sensitivity at the cut-off is 0.04 PEI U/mL.

A study was performed in which a total of 93 specimens from individuals clinically or serologically classified with different stages of HBV infection were tested by ARCHITECT Anti-HBe. Seventeen out of 36 acute specimens were reactive and 19 were nonreactive. Out of 57 chronic specimens, 36 were reactive and 21 were nonreactive.

BIBLIOGRAPHY

The following US Patents are relevant to the ARCHITECT® System or its components. There are other such patents and patent applications in the United States and worldwide.

5,468,646 5,543,524 5,545,739
5,565,570 5,669,819 5,783,699

ARCHITECT® and Chemiflex® are registered trademarks of Abbott Laboratories.
ProClin® is a registered trademark of the Rohm and Haas Company or one of its subsidiaries or affiliates.
SAS® and SAS/STAT® are registered trademarks of SAS Institute Inc.