This package insert must be read carefully prior to use. Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.
NAME
ARCHITECT CMV IgM

INTENDED USE
The ARCHITECT CMV IgM assay is a chemiluminescent microparticle immunoassay (CMA) for the qualitative detection of IgM antibodies to Cytomegalovirus in human serum and plasma.

SUMMARY AND EXPLANATION OF TEST
Infections with Cytomegalovirus (CMV), a member of the herpesvirus family, are common in man and are usually mild and asymptomatic. However in pregnant women, newborns, and immunocompromised individuals CMV infections may pose a significant medical risk. CMV infection remains difficult to diagnose on symptoms alone since a high percentage of infections remain without symptoms. In utero infection may result in sequelae of varying degree including mental retardation, chorioretinitis, hearing loss and neurological problems. Since the risk of in utero virus transmission and CMV related damage of the fetus is strongly increased during primary infection, reliable recognition of primary CMV infections is of high importance for pregnant women, newborns, and immunocompromised individuals. Reinfection with exogenous virus or reactivation of latent virus may lead to the presence of anti-CMV IgM in absence of a primary CMV infection. Although presence of anti-CMV IgG reduces the likelihood of CMV related complications, it does not assure complete protection from disease. CMV acquisition in infants can occur transplacentally following maternal infection, during birth by contact with the virus excreted from the cervix or following birth through the ingestion of infected maternal breast milk. Both seronegative individuals and infants may acquire CMV through infected blood products or contact with an infected individual. Children beyond the neonatal period are susceptible to infection and subsequent transmission of CMV when in day care. If primary infection needs to be excluded, CMV IgG reactive samples should be tested for CMV IgM and CMV IgG avidity. A positive CMV IgM result in connection with low avidity result is a strong indicator of a primary CMV infection within the last 4 months.

<table>
<thead>
<tr>
<th>CMV IgG</th>
<th>CMV IgM</th>
<th>CMV IgG Avidity</th>
<th>Indication for...</th>
</tr>
</thead>
<tbody>
<tr>
<td>nonreactive</td>
<td>nonreactive</td>
<td>N/A</td>
<td>no infection</td>
</tr>
<tr>
<td>reactive</td>
<td>reactive</td>
<td>high avidity</td>
<td>past infection; low risk for in utero transmission</td>
</tr>
<tr>
<td>reactive</td>
<td>reactive</td>
<td>low avidity</td>
<td>primary infection; high risk for in utero transmission</td>
</tr>
<tr>
<td>reactive</td>
<td>reactive</td>
<td>high avidity</td>
<td>non-primary infection; low risk for in utero transmission</td>
</tr>
</tbody>
</table>

BIOLOGICAL PRINCIPLES OF THE PROCEDURE
The ARCHITECT CMV IgM assay is a two-step immunoassay for the qualitative detection of IgM antibodies to Cytomegalovirus in human serum and plasma with flexible assay protocols, referred to as Chemiflex. In the first step, sample, assay diluent, and coated paramagnetic microparticles are combined. Anti-CMV IgM present in the sample binds to the CMV virus lysate (strain AD169) and recombinant CMV antigen coated microparticles. After washing, anti-human IgM acridinium-labeled conjugate is added to create a reaction mixture. Following another wash cycle, pre-trigger and trigger solutions are added to the reaction mixture. The resulting chemiluminescent reaction is measured as relative light units (RLUs). A direct relationship exists between the amount of anti-CMV IgM in the sample and the RLUs detected by the ARCHITECT System optics. The presence or absence of anti-CMV IgM in the sample is determined by comparing the chemiluminescent signal in the reaction to the cutoff signal determined from a previous calibration. If the chemiluminescent signal in the specimen is greater than or equal to the cutoff signal, the sample is considered reactive for anti-CMV IgM.

REAGENTS
Reagent Kit, 100/400 Tests
NOTE: Some kit sizes are not available in all countries or for use on all ARCHITECT Systems. Please contact your local distributor.

ARCHITECT CMV IgM Reagent Kit (6C16)
- **MICROPARTICLES**
 - 1 or 4 Bottle(s) (6.6 mL per 100-test bottle) CMV virus lysate (strain AD169) and recombinant CMV antigen coated microparticles in TRIS buffered saline. Minimum concentration: 0.08% solids. Preservatives: ProClin 300 and antimicrobial agents.
- **CONJUGATE**
 - 1 or 4 Bottle(s) (5.9 mL per 100-test bottle) Murine acridinium-labeled anti-human IgM in MES buffer. Minimum concentration: 48 ng/mL. Preservatives: ProClin 300 and antimicrobial agents.
- **ASSAY DILUENT**
 - 1 or 4 Bottle(s) (10.0 mL per 100-test bottle) CMV IgM assay diluent containing TRIS buffer and goat anti-human IgG. Preservatives: sodium azide and ProClin 950.

Other Reagents
ARCHITECT i/ Pre-Trigger Solution
- **PRE-TRIGGER SOLUTION**
 - Pre-Trigger Solution containing 1.32% (w/v) hydrogen peroxide.
ARCHITECT i/ Trigger Solution
- **TRIGGER SOLUTION**
 - Trigger Solution containing 0.35 N sodium hydroxide.
ARCHITECT i/ Wash Buffer
- **WASH BUFFER**
 - Wash Buffer containing phosphate buffered saline solution. Preservatives: antimicrobial agents.

WARNINGS AND PRECAUTIONS
For In Vitro Diagnostic Use.

Safety Precautions
- **CAUTION:** This product contains human-sourced infectious and/or potentially infectious components. Refer to the REAGENTS section of this package insert. No known test method can offer complete assurance that products derived from human sources or inactivated microorganisms will not transmit infection. Therefore, it is recommended that all human-sourced materials be considered potentially infectious and handled with appropriate biosafety practices.
- **Microparticles, Conjugate and Assay Diluent** contain methylisothiazolones, which are components of ProClin. These components are classified per applicable European Community (EC) Directives as: Irritant (Xi). The following are the appropriate Risk (R) and Safety (S) phrases:
 - **R43** May cause sensitization by skin contact.
 - **S24** Avoid contact with skin.
 - **S35** This material and its container must be disposed of in a safe way.
 - **S37** Wear suitable gloves.
 - **S46** If swallowed, seek medical advice immediately and show this container or label.

SYSTEMS. Please contact your local distributor.
• Assay Diluent contains sodium azide. Contact with acids liberates very toxic gas. This material and its container must be disposed of in a safe way.
• For product not classified as dangerous per European Directive 1999/45/EC as amended - Safety data sheet available for professional user on request.
• For information on the safe disposal of sodium azide and a detailed discussion of safety precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 8.

Handling Precautions

• Do not use reagent kits beyond the expiration date.
• Do not pool reagents within a kit or between reagent kits.
• Before loading the ARCHITECT CMV IgM Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend the microparticles that have settled during shipment. For microparticle mixing instructions, refer to the PROCEDURE, Assay Procedure section of this package insert.
• Septums MUST be used to prevent reagent evaporation and contamination and to ensure reagent integrity. Reliability of assay results cannot be guaranteed if septums are not used according to the instructions in this package insert.
• To avoid contamination, wear clean gloves when placing a septum on an uncapped reagent bottle.
 • When handling conjugate vials, change gloves that have contacted human serum or plasma, since introduction of human IgM will result in a neutralized conjugate.
• Once a septum has been placed on an open reagent bottle, do not invert the bottle as this will result in reagent leakage and may compromise assay results.
• Over time, residual liquids may dry on the septum surface. These are typically dried salts, which have no effect on assay efficacy.
• For a detailed discussion of handling precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 7.

Storage Instructions

• 2°C to 8°C. The ARCHITECT CMV IgM Reagent Kit must be stored at 2-8°C in an upright position and may be used immediately after removal from 2-8°C storage.
• When stored and handled as directed, reagents are stable until the expiration date.
• The ARCHITECT CMV IgM Reagent Kit may be stored on board the ARCHITECT i System for a maximum of 30 days. After 30 days, the reagent kit must be discarded. For information on tracking onboard time, refer to the ARCHITECT System Operations Manual, Section 5.
• Reagents may be stored on or off the ARCHITECT i System. If reagents are removed from the system, store them at 2-8°C (with septums and replacement caps) in an upright position. For reagents stored off the system, it is recommended that they be stored in their original trays and boxes to ensure they remain upright. If the microparticle bottle does not remain upright (with a septum installed) while in refrigerated storage off the system, the reagent kit must be discarded. After reagents are removed from the system, initiate a reagent scan to update the onboard stability timer.
• It is recommended that the assay be calibrated every 30 days.

Indications of Reagent Deterioration

When a control value is out of the specified range, it may indicate deterioration of the reagents or errors in technique. Associated test results are invalid and samples must be retested. Assay recalibration may be necessary. For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.

INSTRUMENT PROCEDURE

• The ARCHITECT CMV IgM assay file must be installed on the ARCHITECT i System from the ARCHITECT i Assay CD-ROM before performing the assay. For detailed information on assay file installation and on viewing and editing assay parameters, refer to the ARCHITECT System Operations Manual, Section 2.
• For information on printing assay parameters, refer to the ARCHITECT System Operations Manual, Section 5.
• For a detailed description of system procedures, refer to the ARCHITECT System Operations Manual.

SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

Specimen Types
The specimen collection tubes listed below were verified to be used with the ARCHITECT CMV IgM assay. Other specimen collection tubes have not been tested with this assay.
• Human serum (including serum collected in serum separator tubes)
• Human plasma collected in:
 • Plasma separator tubes (lithium heparin)
 • Potassium EDTA
 • Sodium citrate
 • Lithium heparin
 • Sodium heparin
• Liquid anticoagulants may have a dilution effect resulting in lower concentrations for individual patient specimens.
• The ARCHITECT i System does not provide the capability to verify specimen type. It is the responsibility of the operator to verify that the correct specimen types are used in the ARCHITECT CMV IgM assay.

Specimen Conditions

• Do not use specimens with the following conditions:
 • heat-inactivated
 • pooled
 • grossly hemolyzed (> 500 mg/dL)
 • obvious microbial contamination
 • cadaver specimens or any other body fluids
• For accurate results, serum and plasma specimens should be free of fibrin, red blood cells, and other particulate matter. Serum specimens from patients receiving anticoagulant or thrombolytic therapy may contain fibrin due to incomplete clot formation.
• Use caution when handling patient specimens to prevent cross contamination. Use of disposable pipettes or pipette tips is recommended.
• For optimal results, inspect all specimens for bubbles. Remove bubbles with an applicator stick before analysis. Use a new applicator stick for each specimen to prevent cross contamination.
• All samples (Calibrator 1, controls, and patient specimens) should be tested within 3 hours of being placed on board the ARCHITECT i System.
Preparation for Analysis
- Follow the tube manufacturer’s processing instructions for serum and plasma collection tubes. Gravity separation is not sufficient for specimen preparation.
- Mix thawed specimens thoroughly by low speed vortexing or by inverting 10 times. Visually inspect the specimens. If layering or stratification is observed, continue mixing until specimens are visibly homogeneous.
- To ensure consistency in results, specimens must be transferred to a centrifuge tube and centrifuged at ≥ 10,000 RCF (Relative Centrifugal Force) for 10 minutes before testing if they contain fibrin, red blood cells, or other particulate matter.
- They require repeat testing, or they were frozen and thawed. Transfer clarified specimen to a sample cup or secondary tube for testing.
- Centrifuged specimens with a lipid layer on the top must be transferred to a sample cup or secondary tube. Care must be taken to transfer only the clarified specimen without the lipemic material.

Storage
- Specimens may be stored on or off the clot, red blood cells, or separator gel for up to 14 days refrigerated at 2-8°C.
- If testing will be delayed more than 14 days, remove serum or plasma from the clot, red blood cells, or separator gel. Specimens may be stored for up to 14 days refrigerated at 2-8°C prior to being tested. If testing will be delayed more than 14 days, store frozen (-10°C or colder).
- No qualitative performance differences were observed between experimental controls and nonreactive or reactive specimens subjected to 6 freeze/thaw cycles; however, multiple freeze/thaw cycles should be avoided.

Shipping
- Before shipping specimens, it is recommended that specimens be removed from the clot, red blood cells, or separator gel.
- When shipping specimens, package and label specimens in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances.
- Specimens may be shipped on wet ice or dry ice. Do not exceed the storage time limitations listed above.

PROCEDURE
Materials Provided
- 6C16 ARCHITECT CMV IgM Reagent Kit

Materials Required but not Provided
- ARCHITECT i System
- ARCHITECT i System Assay CD-ROM
- 6C16-01 ARCHITECT CMV IgM Calibrator
- 6C16-10 ARCHITECT CMV IgM Controls
- ARCHITECT i PRE-TRIGGER SOLUTION
- ARCHITECT i TRIGGER SOLUTION
- ARCHITECT i WASH BUFFER
- ARCHITECT i REACTION VESSELS
- ARCHITECT i SAMPLE CUPS
- ARCHITECT i SEPTUM
- ARCHITECT i REPLACEMENT CAPS
- Pipettes or pipette tips (optional) to deliver the volumes specified in the protocol.

For information on materials required for maintenance procedures, refer to the ARCHITECT System Operations Manual, Section 9.

Assay Procedure
- Before loading the ARCHITECT CMV IgM Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend the microparticles that have settled during shipment. After the first time the microparticles have been loaded, no further mixing is required.
 - Invert the microparticle bottle 30 times.
 - Visually inspect the bottle to ensure microparticles are resuspended. If microparticles remain adhered to the bottle, continue inverting the bottle until the microparticles have been completely resuspended.
 - If the microparticles do not resuspend, DO NOT USE. Contact your local Abbott representative.
 - Once the microparticles have been resuspended, place a septum on the bottle. For instructions on placing septums on bottles, refer to the Handling Precautions section of this package insert.

- Load the ARCHITECT CMV IgM Reagent Kit on the ARCHITECT i System.
 - Verify that all necessary assay reagents are present.
 - Ensure that septums are present on all reagent bottles.
 - Order calibration, if necessary.
 - For information on ordering calibrations, refer to the ARCHITECT System Operations Manual, Section 6.
 - Order tests.
 - For information on ordering patient specimens and controls and for general operating procedures, refer to the ARCHITECT System Operations Manual, Section 5.

- The minimum sample cup volume is calculated by the system and is printed on the Orderlist report. No more than 10 replicates may be sampled from the same sample cup. To minimize the effects of evaporation, verify adequate sample cup volume is present before running the test.
 - Priority: 75 µL for the first ARCHITECT CMV IgM test plus 25 µL for each additional ARCHITECT CMV IgM test from the same sample cup.
 - ≤ 3 hours on board: 150 µL for the first ARCHITECT CMV IgM test plus 25 µL for each additional ARCHITECT CMV IgM test from the same sample cup.
 - > 3 hours on board: additional sample volume is required. For information on sample evaporation and volumes, refer to the ARCHITECT System Operations Manual, Section 5.
 - If using primary or aliquot tubes, use the sample gauge to ensure sufficient patient specimen is present.

- Prepare calibrator and controls.
 - Mix ARCHITECT CMV IgM Calibrator and Controls by gentle inversion before use.
 - To obtain the recommended volume requirements for the ARCHITECT CMV IgM Calibrator and Controls, hold the bottles vertically and dispense 4 drops of Calibrator 1 or 4 drops of each control into each respective sample cup.

- Load samples.
 - For information on loading samples, refer to the ARCHITECT System Operations Manual, Section 5.
 - Press RUN.
 - For additional information on principles of operation, refer to the ARCHITECT System Operations Manual, Section 3.
 - For optimal performance, it is important to perform routine maintenance as described in the ARCHITECT System Operations Manual, Section 9. When a laboratory requires more frequent maintenance, follow those procedures.
Specimen Dilution Procedures

Specimens cannot be diluted for the ARCHITECT CMV IgM assay.

Calibration

• To perform an ARCHITECT CMV IgM calibration, test Calibrator 1 in replicates of three. A single sample of each ARCHITECT CMV IgM control level must be tested to evaluate the assay calibration. Ensure that assay control values are within the concentration ranges specified in the control package insert. Calibrator 1 should be priority loaded.
• Once an ARCHITECT CMV IgM calibration is accepted and stored, all subsequent samples may be tested without further calibration unless:
 • A reagent kit with a new lot number is used.
 • Controls are out of range.
• It is recommended that the assay be calibrated every 30 days.
• For detailed information on how to perform an assay calibration, refer to the ARCHITECT System Operations Manual, Section 6.

QUALITY CONTROL PROCEDURES

The recommended control requirement for the ARCHITECT CMV IgM assay is that a single sample of each control be tested once every 24 hours each day of use. If laboratory quality control procedures require more frequent use of controls to verify test results, follow those procedures.

The ARCHITECT CMV IgM Control values must be within the acceptable ranges specified in the control package insert. If a control is out of its specified range, the associated test results are invalid and samples must be retested. Recalibration may be indicated.

Verification of Assay Claims

For protocols to verify package insert claims, refer to the ARCHITECT System Operations Manual, Appendix B. The ARCHITECT CMV IgM assay belongs to method group 5 (except functional sensitivity).

RESULTS

Calculation

The ARCHITECT System calculates the Calibrator 1 mean chemiluminescent signal from three Calibrator 1 replicates and stores the result. Results are reported by dividing sample result by the stored Calibrator 1 result.

The default result unit for the ARCHITECT CMV IgM assay is Index. Sample results may also be reported as sample to cutoff (S/CO). The values for Index and S/CO are equivalent.

Interpretation of Results

• Specimens with concentration values < 0.85 Index are considered nonreactive for IgM antibodies to CMV and indicate the absence of acute infection.
• Specimens with concentration values ≥ 1.00 Index are considered reactive for IgM antibodies to CMV and indicate acute infection. Such individuals are potentially at risk of transmitting CMV infection.

NOTE: It is recommended to confirm the clinical relevance of results ≥ 0.85 Index by testing the sample for CMV IgG Avidity. If the results continue to be unclear, consider taking a second sample within an appropriate period of time (e.g., 2 weeks) and repeating testing.

Flags

• Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the ARCHITECT System Operations Manual, Section 5.

LIMITATIONS OF THE PROCEDURE

• If the ARCHITECT CMV IgM results are inconsistent with clinical evidence, additional testing is suggested to confirm the result.
• For diagnostic purposes, results should be used in conjunction with other data; e.g., results of other tests (CMV IgG, CMV IgG Avidity), clinical impressions, etc.
• IgM rheumatoid factor (RF) in combination with CMV specific IgG can lead to false reactive results in IgM detecting assays. The ARCHITECT CMV IgM Assay Diluent minimizes RF interference, however, in rare cases interference caused by high concentrations of RFs and CMV specific IgG cannot be excluded.
• Heterophilic antibodies in human serum can react with reagent immunoglobulins, interfering with in vitro immunoassays. Patients routinely exposed to animals or to animal serum products can be prone to this interference and anomalous values may be observed. Additional information may be required for diagnosis.
• Specimens from patients who have received preparations of mouse monoclonal antibodies for diagnosis or therapy may contain human anti-mouse antibodies (HAMA). Specimens containing HAMA may produce anomalous values when tested with assay kits (such as ARCHITECT CMV IgM) that employ mouse monoclonal antibodies.

SPECIFIC PERFORMANCE CHARACTERISTICS

Precision

The ARCHITECT CMV IgM assay is designed to have a precision of ≤ 10% total** CV for the Positive Control.

A study was performed with the ARCHITECT CMV IgM assay based on guidance from the Clinical and Laboratory Standards Institute. Calibrator 1 and controls were tested with 3 reagent lots at the internal site and with 2 reagent lots at 1 external evaluation site. Each sample was tested on a total of 2 instruments in replicates of 5 at 2 separate times per day for 5 days. Data from this study are summarized in the following table.*

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Mean RLU</th>
<th>SD</th>
<th>%CV</th>
<th>Mean RLU</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibrator 1</td>
<td>500</td>
<td>2853</td>
<td>108.7</td>
<td>3.8</td>
<td>108.7</td>
<td>3.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>N</th>
<th>Mean Index</th>
<th>SD</th>
<th>%CV</th>
<th>Mean Index</th>
<th>SD</th>
<th>%CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>NC</td>
<td>1500</td>
<td>0.14</td>
<td>0.010</td>
<td>6.885</td>
<td>0.010</td>
<td>6.885</td>
<td></td>
</tr>
<tr>
<td>PC</td>
<td>1500</td>
<td>2.54</td>
<td>0.083</td>
<td>3.265</td>
<td>0.085</td>
<td>3.328</td>
<td></td>
</tr>
</tbody>
</table>

* Representative data; results in individual laboratories may vary from these data.
** Total is an accumulation of within run, between run and between day.

Seroconversion Sensitivity

The ARCHITECT CMV IgM assay is designed to show a comparable seroconversion sensitivity to a commercially available diagnostic kit. Three commercially available seroconversion panels were obtained and tested. The following table shows data from these seroconversion panels.*
Resolved Relative Specificity

The ARCHITECT CMV IgM assay is designed to have a resolved relative specificity equal to or greater than a commercially available diagnostic kit. From the 1085 specimens evaluated 24 specimens were confirmed positive after discordant resolution. **Note: Specimens that could not be resolved or showed grayzone result interpretation were not included in the evaluation of relative specificity.**

Data for resolved relative specificity are summarized in the following table.*

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>ARCHITECT CMV IgM</th>
<th>Commercially available diagnostic kit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Observed</td>
<td>Lower 95% Confidence Limit</td>
</tr>
<tr>
<td>Blood Donors (Serum)</td>
<td>99.83%</td>
<td>97.95%</td>
</tr>
<tr>
<td></td>
<td>(268/269)</td>
<td>(266/269)</td>
</tr>
<tr>
<td>Blood Donors (Plasma)</td>
<td>100.00%</td>
<td>97.52%</td>
</tr>
<tr>
<td></td>
<td>(147/147)</td>
<td>(144/147)</td>
</tr>
<tr>
<td>Pregnant Women</td>
<td>99.30%</td>
<td>97.49%</td>
</tr>
<tr>
<td></td>
<td>(283/285)</td>
<td>(276/285)</td>
</tr>
<tr>
<td>Diagnostic/ Hospital Patients</td>
<td>99.44%</td>
<td>98.01%</td>
</tr>
<tr>
<td></td>
<td>(358/360)</td>
<td>(345/360)</td>
</tr>
<tr>
<td>Total</td>
<td>99.53%</td>
<td>98.90%</td>
</tr>
<tr>
<td></td>
<td>(1056/1061)</td>
<td>(1031/1061)</td>
</tr>
</tbody>
</table>

* Representative data; results in individual laboratories may vary from these data.

Interference

No interference was observed between experimental controls and nonreactive or reactive specimens tested with elevated levels of bilirubin (20 mg/dL), triglycerides (3000 mg/dL), protein (4.5 - 12 g/dL), red blood cells (0.4% v/v), or hemoglobin (500 mg/dL).

The interference of the ARCHITECT CMV IgM assay was further evaluated on 351 specimens positive for anti-nuclear antibody, systemic lupus erythematosus, rheumatoid factor, herpes simplex virus types 1 and 2, Epstein-Barr virus, measles, parvovirus B19, varicella zoster virus, hyperpolyclonal IgM, hyperpolyclonal IgG, human anti-mouse antibody, high titer CMV IgG, and influenza vaccine recipients. With these specimens, ARCHITECT CMV IgM and a commercially available diagnostic kit showed 95.44% agreement (335/351) (lower 95% confidence limit: 92.70%). Of the 16 discordant specimens 3 specimens were false reactive, 9 specimens true negative, and 4 specimens true positive by the ARCHITECT CMV IgM assay after discordant resolution.

BIBLIOGRAPHY

Table: Resolved Relative Specificity

<table>
<thead>
<tr>
<th>Panel</th>
<th>Day after 1st draw</th>
<th>ARCHITECT CMV IgM</th>
<th>Commercially available diagnostic kit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cutoff: 1.00 Index</td>
<td>Cutoff: 0.500 Index</td>
</tr>
<tr>
<td>RP-003 (Profile Diagnostics)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.60 (reactive)</td>
<td>0.205 (negative)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4.71 (reactive)</td>
<td>0.982 (positive)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5.70 (reactive)</td>
<td>2.896 (positive)</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>1.74 (reactive)</td>
<td>0.732 (positive)</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>1.44 (reactive)</td>
<td>0.808 (positive)</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>1.29 (reactive)</td>
<td>0.616 (positive)</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>1.20 (reactive)</td>
<td>0.379 (positive)</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>1.18 (reactive)</td>
<td>0.668 (positive)</td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>1.08 (reactive)</td>
<td>0.622 (positive)</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>1.05 (reactive)</td>
<td>0.652 (positive)</td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>1.07 (reactive)</td>
<td>0.593 (positive)</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>1.07 (reactive)</td>
<td>0.710 (positive)</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>1.15 (reactive)</td>
<td>0.846 (positive)</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>1.05 (reactive)</td>
<td>0.679 (positive)</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>1.02 (reactive)</td>
<td>0.698 (positive)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Panel</th>
<th>Day after 1st draw</th>
<th>ARCHITECT CMV IgM</th>
<th>Commercially available diagnostic kit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cutoff: 1.00 Index</td>
<td>Cutoff: 0.500 Index</td>
</tr>
<tr>
<td>RP-019 (Profile Diagnostics)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.26 (nonreactive)</td>
<td>0.188 (negative)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.24 (nonreactive)</td>
<td>0.121 (negative)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.25 (nonreactive)</td>
<td>0.143 (negative)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.27 (nonreactive)</td>
<td>0.148 (negative)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.24 (nonreactive)</td>
<td>0.123 (negative)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.35 (nonreactive)</td>
<td>0.294 (negative)</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.41 (nonreactive)</td>
<td>0.214 (negative)</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>0.99 (grayzone)</td>
<td>0.168 (negative)</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>4.22 (reactive)</td>
<td>0.670 (positive)</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>6.30 (reactive)</td>
<td>1.433 (positive)</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>7.05 (reactive)</td>
<td>2.925 (positive)</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>6.06 (reactive)</td>
<td>2.094 (positive)</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>5.30 (reactive)</td>
<td>1.909 (positive)</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>4.11 (reactive)</td>
<td>1.389 (positive)</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>3.68 (reactive)</td>
<td>1.160 (positive)</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>2.98 (reactive)</td>
<td>0.933 (positive)</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>3.19 (reactive)</td>
<td>1.099 (positive)</td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>2.87 (reactive)</td>
<td>0.830 (positive)</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>2.66 (reactive)</td>
<td>0.864 (positive)</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>2.50 (reactive)</td>
<td>0.691 (positive)</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>2.24 (reactive)</td>
<td>0.647 (positive)</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>2.43 (reactive)</td>
<td>0.805 (positive)</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>2.66 (reactive)</td>
<td>0.886 (positive)</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>2.12 (reactive)</td>
<td>0.635 (positive)</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>2.18 (reactive)</td>
<td>0.670 (positive)</td>
<td></td>
</tr>
</tbody>
</table>

* Representative data; results in individual laboratories may vary from these data.

The following US Patents are relevant to the ARCHITECT i System or its components. There are other such patents and patent applications in the United States and worldwide.

5 468 646 5 543 524 5 545 739
5 565 570 5 669 819 5 783 699

ARCHITECT is a registered trademark of Abbott Laboratories.
ProClin is a registered trademark of Rohm and Haas Company.

For additional product information, contact your local customer service organization.

Abbott Ireland
Diagnostics Division
Finisklin Business Park
Sligo
Ireland
+ 353-71-9171712

January 2007
© 2007 Abbott Laboratories