Total T₄

Customer Service: Contact your local representative or find country specific contact information on www.abbottdiagnostics.com

Package insert instructions must be carefully followed. Reliability of assay results cannot be guaranteed if there are any deviations from the instructions in this package insert.

Key to symbols used

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>REF</td>
<td>List Number</td>
</tr>
<tr>
<td>IVD</td>
<td>In Vitro Diagnostic Medical Device</td>
</tr>
<tr>
<td>LOT</td>
<td>Lot Number</td>
</tr>
<tr>
<td></td>
<td>Expiration Date</td>
</tr>
<tr>
<td></td>
<td>Store at 2-8°C</td>
</tr>
<tr>
<td></td>
<td>Consult instructions for use</td>
</tr>
<tr>
<td></td>
<td>Manufacturer</td>
</tr>
<tr>
<td>CAL₁</td>
<td>Calibrator (1, 2)</td>
</tr>
<tr>
<td>CONTROL L</td>
<td>Control Low, Medium, High (L, M, H)</td>
</tr>
<tr>
<td>ASSAY CD-ROM</td>
<td>Assay CD-ROM</td>
</tr>
<tr>
<td>REACTION VESSELS</td>
<td>Reaction Vessels</td>
</tr>
<tr>
<td>SAMPLE CUPS</td>
<td>Sample Cups</td>
</tr>
<tr>
<td>SEPTUM</td>
<td>Septum</td>
</tr>
<tr>
<td>REPLACEMENT CAPS</td>
<td>Replacement Caps</td>
</tr>
<tr>
<td>SN</td>
<td>Serial Number</td>
</tr>
<tr>
<td>REAGENT LOT</td>
<td>Reagent Lot</td>
</tr>
<tr>
<td>WARNING: SENSITIZER</td>
<td>Warning: May cause an allergic reaction</td>
</tr>
<tr>
<td>CONTAINS: AZIDE</td>
<td>Contains sodium azide. Contact with acids liberates very toxic gas.</td>
</tr>
</tbody>
</table>

See REAGENTS section for a full explanation of symbols used in reagent component naming.
NAME
ARCHITECT Total T4

INTENDED USE
The ARCHITECT Total T4 (TT4) assay is a Chemiluminescent Microparticle Immunoassay (CMA) for the quantitative determination of thyroxine (Total T4) in human serum and plasma.

SUMMARY AND EXPLANATION OF TEST
Thyroxine (T4) is an iodine-containing hormone which has a molecular weight of approximately 777 daltons and is secreted by the thyroid gland. T4 and its associate thyroid hormone T3 are responsible for regulating diverse biochemical processes throughout the body which are essential for normal metabolic and neural activity.1 Although T3 has greater biologic potency², T4 is normally present in human serum in approximately 50-fold excess of circulating T3 and accounts for more than 90% of the circulating protein-bound iodine. T4 is 99.9% bound to serum thyroxine binding proteins (TBP). The hormone is transported bound primarily to thyroxine binding globulin (TBG) and secondarily by thyroxine binding prealbumin (TBPA) and albumin.³ Less than 0.05% of the total circulating T4 is unbound and therefore biologically active.⁴,⁵ Clinically, T4 measurements have long been recognized as an aid in the assessment and diagnosis of thyroid status. Elevated T4 levels are characteristically seen in patients with overt hyperthyroidism, while T4 levels are generally depressed in patients with overt hypothyroidism. Normal T4 levels accompanied by high T3 values are seen in patients with T3-thytoxicosis.⁶ T4 levels are altered by physiological or pathological changes in TBP capacity.³,⁴ Thyroxine binding globulin (TBG) capacity has a pronounced effect on the concentration of thyroid hormones. Consequently, T4 levels may be elevated with increased concentrations of TBG, such as in pregnancy, administration of oral contraceptives or estrogen, infectious and chronic active hepatitis, biliary cirrhosis or congenital increase in TBG levels.⁷,⁹ Conversely, when TBG levels are decreased, such as in nephrotic syndrome, androgen therapy, glucocorticoid therapy, major systemic illness or congenital decrease of TBG, T4 may be reduced.⁸

Drugs which compete for protein binding sites, such as phenylbutazone, diphenylhydantoin or salicylates, can result in a depressed T4 measurement.⁷,⁹ Serum T4 levels in neonates and infants are higher than values in the normal adult, due to the increased concentration of TBG in neonate serum.¹⁰ While in many cases T4 values give good indications of thyroid status, T4 values should be normalized for individual variations in thyroxine binding protein (TBP) capacity. The Free Thyroxine Index (FTI) is conventionally used to achieve this measurement.¹¹,¹² To ensure maximum diagnostic accuracy, the final definition of thyroid status should be determined in conjunction with other thyroid function tests such as TSH, Free T4, Total T3, FTI and clinical evaluation by the physician.

The ARCHITECT Total T4 assay is to be used as an aid in the assessment of thyroid status.

BIOLOGICAL PRINCIPLES OF THE PROCEDURE
The ARCHITECT Total T4 assay is a two-step immunoassay to determine the presence of thyroxine (Total T4) in human serum and plasma using Chemiluminescent Microparticle Immunoassay (CMA) technology with flexible assay protocols, referred to as ChemiFlex.

In the first step, sample and anti-T4 coated paramagnetic microparticles are combined. Bound T4 is removed from the binding sites on thyroxine binding globulin, prealbumin and albumin. T4 present in the sample binds to the anti-T4 coated microparticles. After washing, T3 acridinium-labeled conjugate is added in the second step. Pre-Trigger and Trigger Solutions are then added to the reaction mixture; the resulting chemiluminescent reaction is measured as relative light units (RLUs). An inverse relationship exists between the amount of Total T4 in the sample and the RLUs detected by the ARCHITECT / optical system.

For additional information on system and assay technology, refer to the ARCHITECT System Operations Manual, Section 3.
Handling Precautions

- Do not use reagent kits beyond the expiration date.
- Do not mix reagents from different reagent kits.
- Prior to loading the ARCHITECT Total T4 Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend microparticles that have settled during shipment. For microparticle mixing instructions, refer to the PROCEDURE, Assay Procedure section of this package insert.
- Septums MUST be used to prevent reagent evaporation and contamination and to ensure reagent integrity. Reliability of assay results cannot be guaranteed if septums are not used according to the instructions in this package insert.
- To avoid contamination, wear clean gloves when placing a septum on an uncapped reagent bottle.
- Once a septum has been placed on an open reagent bottle, do not invert the bottle as this will result in reagent leakage and may compromise assay results.
- Over time, residual liquids may dry on the septum surface. These are typically dried salts which have no effect on assay efficacy.
- For a detailed discussion of handling precautions during system operation, refer to the ARCHITECT System Operations Manual, Section 7.

Storage Instructions

- 2°C to 8°C. The ARCHITECT Total T4 Reagent Kit must be stored at 2-8°C and may be used immediately after removal from 2-8°C storage.
- When stored and handled as directed, reagents are stable until the expiration date.
- The ARCHITECT Total T4 Reagent Kit may be stored on-board the ARCHITECT i System for a maximum of 30 days. After 30 days, the reagent kit must be discarded. For information on tracking on-board time, refer to the ARCHITECT System Operations Manual, Section 5.
- Reagents may be stored on or off the ARCHITECT i System. If reagents are removed from the system, store them at 2-8°C (with septums and replacement caps) in an upright position. For reagents stored off the system, it is recommended that they be stored in their original trays and boxes to ensure they remain upright. If the microparticle bottle does not remain upright (with a septum installed) while in refrigerated storage off the system, the reagent kit must be discarded. After reagents are removed from the system, you must initiate a scan to update the on-board stability timer.

Indications of reagent instability or deterioration

When a control value is out of the specified range, it may indicate deterioration of the reagents or errors in technique. Associated test results may be invalid and may require retesting. Assay recalibration may be necessary. For troubleshooting information, refer to the ARCHITECT System Operations Manual, Section 10.

INSTRUMENT PROCEDURE

- The ARCHITECT Total T4 assay file must be installed on the ARCHITECT i System from the ARCHITECT i Assay CD-ROM prior to performing the assay. For detailed instructions on assay file installation and on viewing and editing assay parameters, refer to the ARCHITECT System Operations Manual, Section 2.
- For information on printing assay parameters, refer to the ARCHITECT System Operations Manual, Section 5.
- For a detailed description of system procedures, refer to the ARCHITECT System Operations Manual.
- The default result unit for the ARCHITECT Total T4 assay is μg/dL. An alternate result unit, nmol/L, may be selected for reporting results by editing assay parameter “Result concentration units”, to nmol/L. The conversion factor used by the system is 12.87.

SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

- Human serum (including serum collected in separator tubes) or plasma collected in sodium heparin, lithium heparin (including plasma separator tubes), or potassium EDTA anticoagulant tubes may be used in the ARCHITECT Total T4 assay. Other anticoagulants have not been validated for use with the ARCHITECT Total T4 assay. Follow the manufacturer’s processing instructions for serum or plasma collection tubes.
- When serial specimens are being evaluated, the same type of specimen should be used throughout the study.
- The ARCHITECT i System does not provide the capability to verify specimen type. It is the responsibility of the operator to verify the correct specimen types are used in the ARCHITECT Total T4 assay.
- Use caution when handling patient specimens to prevent cross contamination. Use of disposable pipettes or pipette tips is recommended.
- Do not use heat-inactivated specimens.
- For optimal results, inspect all samples for bubbles. Remove bubbles with an applicator stick prior to analysis. Use a new applicator stick for each sample to prevent cross contamination.
- For optimal results, serum and plasma specimens should be free of fibrin, red blood cells or other particulate matter.
- Ensure that complete clot formation in serum specimens has taken place prior to centrifugation. Some specimens, especially those from patients receiving anticoagulant or thrombolytic therapy may exhibit increased clotting time. If the specimen is centrifuged before a complete clot forms, the presence of fibrin may cause erroneous results.
- If testing will be delayed more than 24 hours, remove serum or plasma from the clot, serum separator or red blood cells. Specimens may be stored for up to 6 days at 2-8°C prior to being tested. If testing will be delayed more than 6 days, specimens should be frozen at -10°C or colder. Specimens stored frozen at -10°C or colder for 8 days showed no performance difference.
- Multiple freeze-thaw cycles of specimens should be avoided. Specimens must be mixed THOROUGHLY after thawing, by LOW speed vortexing or by gently inverting, and centrifuged prior to use to remove red blood cells or particulate matter to ensure consistency in the results.
- When shipped, specimens must be packaged and labeled in compliance with applicable state, federal and international regulations covering the transport of clinical specimens and infectious substances. Prior to shipment, it is recommended that specimens be removed from the clot, serum separator or red blood cells.

PROCEDURE

Materials Provided

- 7K66 ARCHITECT Total T4 Reagent Kit

Materials Required but not Provided

- ARCHITECT i System
- ARCHITECT i ASSAY CD-ROM
- 7K66-01 ARCHITECT Total T4 Calibrators
- 7K66-10 ARCHITECT Total T4 Controls
- ARCHITECT i PRE-TRIGGER SOLUTION
- ARCHITECT i TRIGGER SOLUTION
- ARCHITECT i WASHER BUFFER
- ARCHITECT i REACTION VESSELS
- ARCHITECT i SAMPLE CUPS
- ARCHITECT i SEPTUM
- ARCHITECT i REPLACEMENT CAPS
- Pipettes or pipette tips (optional) to deliver the volumes specified on the patient or control order screen.
Assay Procedure

Before loading the ARCHITECT Total T₄ Reagent Kit on the system for the first time, the microparticle bottle requires mixing to resuspend microparticles that have settled during shipment:

- Invert the microparticle bottle 30 times.
- Visually inspect the bottle to ensure microparticles are resuspended. If microparticles are still adhered to the bottle, continue to invert the bottle until the microparticles have been completely resuspended.
- If the microparticles do not resuspend, DO NOT USE. Contact your local Abbott representative.

- Once the microparticles have been resuspended, remove and discard the cap. Wearing clean gloves, remove a septum from the bag. Carefully snap the septum onto the top of the bottle.
- Order tests.
- Load the ARCHITECT Total T₄ Reagent Kit on the ARCHITECT i/ System. Verify that all necessary assay reagents are present. Ensure that septums are present on all reagent bottles.

- The minimum sample cup volume is calculated by the system and is printed on the Orderlist report. No more than 10 replicates may be sampled from the same sample cup. To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.

 - Priority: 75 μL for the first Total T₄ test plus 25 μL for each additional Total T₄ test from the same sample cup
 - ≤ 3 hours onboard: 150 μL for the first Total T₄ test plus 25 μL for each additional Total T₄ test from the same sample cup
 - > 3 hours onboard: additional sample volume is required. Refer to the ARCHITECT System Operations Manual, Section 5 for information on sample evaporation and volumes.

- If using primary or aliquot tubes, use the sample gauge to ensure sufficient patient specimen is present.

- ARCHITECT Total T₄ Calibrators and Controls should be mixed by gentle inversion prior to use.

- To obtain the recommended 150 μL volume requirements for the ARCHITECT Total T₄ Calibrators and Controls, hold the bottles vertically and dispense 4 drops of each calibrator or 4 drops of each control into each respective sample cup.

- Load samples.

- For information on loading samples, refer to the ARCHITECT System Operations Manual, Section 5.

- Press RUN. The ARCHITECT i / System performs the following function:
 - Moves the sample to the aspiration point
 - Loads a reaction vessel (RV) into the process path
 - Aspirates and transfers sample into the RV
 - Advances the RV one position and transfers microparticles into the RV
 - Mixes, incubates and washes the reaction mixture
 - Adds conjugate to the RV
 - Mixes, incubates and washes the reaction mixture
 - Adds Pre-Trigger and Trigger Solutions
 - Measures chemiluminescent emission to determine the quantity of Total T₄ in the sample
 - Aspirates contents of RV to liquid waste and unloads RV to solid waste
 - Calculates the result

- For information on ordering patient specimens, controls, and general operating procedures refer to the ARCHITECT System Operations Manual, Section 5.

- For optimal performance, it is important to follow the routine maintenance procedures defined in the ARCHITECT System Operations Manual, Section 9. If your laboratory requires more frequent maintenance, follow those procedures.

Specimen Dilution Procedures

Specimens with a Total T₄ value exceeding 24.00 μg/dL are flagged with the code ">24.00" and may be diluted with the Manual Dilution Procedure.

- Manual Dilutions should be performed as follows:
 - The suggested dilution for Total T₄ is 1:2. It is recommended dilutions not exceed 1:2.
 - For a 1:2 dilution, add a minimum of 75 μL of the patient specimen to 75 μL of ARCHITECT Total T₄ Calibrator 1.
 - To avoid contamination of Calibrator 1, dispense several drops of Calibrator 1 into a clean test tube prior to pipetting.
 - The operator must enter the dilution factor (2) in the patient or control order screen. The system will use this dilution factor to automatically calculate the concentration of the sample before dilution. This will be the reported result. The dilution should be performed so that the reported result reads greater than 6.0 μg/dL.
 - If the operator does not enter the dilution factor, the reported result will be that of the diluted sample. This result (before dilution factor is applied) should be greater than 3.0 μg/dL.
 - For detailed information on ordering dilutions, refer to the ARCHITECT System Operations Manual, Section 5.

Calibration

- To perform an ARCHITECT Total T₄ calibration, test Calibrators 1 and 2 in duplicate. A single sample of all levels of Total T₄ controls must be tested to evaluate the assay calibration. Ensure that assay control values are within the concentration ranges specified in the control package insert. Calibrators should be priority loaded.

 - Calibrator Range: 0.0 - 24.0 μg/dL.
 - Once an ARCHITECT Total T₄ calibration is accepted and stored, all subsequent samples may be tested without further calibration unless:
 - A reagent kit with a new lot number is used.
 - Controls are out of range.

- For detailed information on how to perform an assay calibration, refer to the ARCHITECT System Operations Manual, Section 6.

QUALITY CONTROL PROCEDURES

The recommended control requirement for the ARCHITECT Total T₄ assay is a single sample of all control levels tested once every 24 hours each day of use. If the quality control procedures in your laboratory require more frequent use of controls to verify test results, follow your laboratory-specific procedures. Ensure that assay control values are within the concentration ranges specified in the control package insert.

Verification of Assay Claims

For protocols to verify package insert claims, refer to the ARCHITECT System Operations Manual, Appendix B. The ARCHITECT Total T₄ assay belongs to method group 1.

RESULTS

The ARCHITECT Total T₄ assay utilizes a 4 Parameter Logistic Curve Fit data reduction method (4PLC, X weighted) to generate a calibration curve.

Alternate Result Units

- The default result unit for the ARCHITECT Total T₄ assay is μg/dL. When the alternate result unit, nmol/L, is selected, the conversion factor used by the system is 12.87.
- Conversion Formula:

 \[(\text{Concentration in μg/dL}) \times (12.87) = \text{Concentration in nmol/L}\]

Flags

- Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the ARCHITECT System Operations Manual, Section 5.
LIMITATIONS OF THE PROCEDURE

- For diagnostic purposes, results should be used in conjunction with other data; e.g., symptoms, results of other thyroid tests, clinical impressions, etc.
- If the Total T4 results are inconsistent with clinical evidence, additional testing is suggested to confirm the result.
- Performance of this test has not been established with neonatal specimens.

EXPECTED VALUES

A normal range of 4.87 μg/dL to 11.72 μg/dL (central 95% interval) was obtained by testing serum specimens from 437 individuals determined as normal by AxSYM Ultrasensitive hTSH II and AxSYM Free T4 assays. It is recommended that each laboratory establish its own normal range, which may be unique to the population it serves depending upon geographical, patient, dietary, or environmental factors.

SPECIFIC PERFORMANCE CHARACTERISTICS

Precision

The ARCHITECT Total T4 assay is designed to have a precision of ≤ 10% (total CV) for concentrations in the range of the low control (4.2 μg/dL), medium control (7.4 μg/dL), and high control (14.6 μg/dL).

A study based on guidance from Clinical and Laboratory Standards Institute (CLSI, formerly NCCLS) document EP5-A17 was performed for the ARCHITECT Total T4 assay. A three member processed human serum based panel was assayed, using two lots of reagents, in replicates of two at two separate times per day for 20 testing days. Data from this study are shown in the following table.*

<table>
<thead>
<tr>
<th>Panel</th>
<th>REAGENT</th>
<th>Control</th>
<th>n</th>
<th>G0000</th>
<th>Recovery</th>
<th>SD</th>
<th>CV %</th>
<th>SD</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 2</td>
<td>80</td>
<td>4.32</td>
<td>0.176</td>
<td>4.1</td>
<td>0.196</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 1</td>
<td>80</td>
<td>4.45</td>
<td>0.133</td>
<td>3.0</td>
<td>0.167</td>
<td>3.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 2 2</td>
<td>80</td>
<td>4.30</td>
<td>0.136</td>
<td>3.2</td>
<td>0.151</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2 2</td>
<td>80</td>
<td>7.46</td>
<td>0.251</td>
<td>3.4</td>
<td>0.300</td>
<td>4.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2 1</td>
<td>80</td>
<td>7.35</td>
<td>0.222</td>
<td>3.0</td>
<td>0.268</td>
<td>3.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 2 2</td>
<td>80</td>
<td>7.32</td>
<td>0.210</td>
<td>3.0</td>
<td>0.224</td>
<td>3.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 1</td>
<td>80</td>
<td>14.87</td>
<td>0.521</td>
<td>3.5</td>
<td>0.655</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 2</td>
<td>80</td>
<td>14.94</td>
<td>0.521</td>
<td>3.5</td>
<td>0.655</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 2</td>
<td>80</td>
<td>16.22</td>
<td>0.616</td>
<td>3.8</td>
<td>0.738</td>
<td>4.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 2 2</td>
<td>80</td>
<td>15.13</td>
<td>0.595</td>
<td>3.9</td>
<td>0.703</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Representative data; results in individual laboratories may vary from these data.

Recovery

The ARCHITECT Total T4 assay is designed to have a mean recovery of 100 ± 10% when analyzing samples spiked with known amounts of T4. T4 was added to five normal human serum samples. The concentration of Total T4 was determined using the ARCHITECT Total T4 assay and the resulting percent recovery was calculated.*

<table>
<thead>
<tr>
<th>Sample</th>
<th>G0000</th>
<th>Recovery</th>
<th>% Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 2</td>
<td>80</td>
<td>8.825</td>
<td>112.7</td>
</tr>
<tr>
<td>2 2 2</td>
<td>80</td>
<td>8.487</td>
<td>99.8</td>
</tr>
<tr>
<td>3 2 2</td>
<td>80</td>
<td>8.631</td>
<td>88.2</td>
</tr>
<tr>
<td>4 2 2</td>
<td>80</td>
<td>7.911</td>
<td>95.9</td>
</tr>
<tr>
<td>5 2 2</td>
<td>80</td>
<td>10.015</td>
<td>122.3</td>
</tr>
</tbody>
</table>

Mean Recovery: 103.6%

Analytical Sensitivity

The ARCHITECT Total T4 assay is designed to have an analytical sensitivity of ≤ 1.0 μg/dL. Analytical sensitivity is defined as the concentration calculated as the mean plus two standard deviations of replicates of the ARCHITECT Total T4 MasterCheck Level 0 (0.0 μg/dL). The analytical sensitivity (low-linearity) is defined in the ARCHITECT Total T4 assay parameters as 1.0 μg/dL.

Analytical Specificity

The ARCHITECT Total T4 assay is designed to have a mean analytical specificity of ≤ 3.2% cross reactivity with triiodothyronine (T3) at a concentration of 100 μg/dL in a sample containing approximately 3 μg/dL of Total T4 as confirmed by a study based on guidance from CLSI document EP7-A.18

Interference

The ARCHITECT Total T4 assay is designed to have a mean potential interference from hemoglobin, bilirubin, triglycerides, and protein of < 10% at the levels indicated below as confirmed by a study based on guidance from CLSI document EP7-A.18

- Hemoglobin ≤ 500 mg/dL
- Bilirubin ≤ 20 mg/dL
- Triglycerides ≤ 3000 mg/dL
- Protein ≥ 4.5 and ≤ 12 g/dL

Accuracy by Correlation

The ARCHITECT Total T4 assay is designed to have a slope of 1.00 ± 0.20 and a correlation coefficient (r) of ≥ 0.90 when compared to the AxSYM Total T4 assay.

A study was performed where specimens were tested using ARCHITECT Total T4 assay and AxSYM Total T4 assay. Data from this study were analyzed using least squares and Passing Bablok19 regression methods and are summarized in the following table.*

<table>
<thead>
<tr>
<th>Method</th>
<th>Number of Specimens</th>
<th>Intercept</th>
<th>Slope</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Least Squares</td>
<td>656</td>
<td>-0.26</td>
<td>0.96</td>
<td>0.97</td>
</tr>
<tr>
<td>Linear Regression**</td>
<td>656</td>
<td>-0.20</td>
<td>0.94</td>
<td>0.97</td>
</tr>
</tbody>
</table>

In this evaluation, serum specimens tested ranged from 1.03 to 20.55 μg/dL with the ARCHITECT Total T4 assay and from 1.12 to 22.46 μg/dL with the AxSYM Total T4 assay.

* Representative data: variables such as differences in sampling size and sample population may impact the correlation of the assay; therefore, results in individual laboratories may vary from these data.

** A linear regression method with no special assumptions regarding the distribution of the samples and the measurement errors.19

BIBLIOGRAPHY

AxSYM, ARCHITECT, Chemiflex and MasterCheck are trademarks of Abbott Laboratories in various jurisdictions. All trademarks are property of their respective owners.